Web Hyperlink Analysis Algorithms

The peach and the plum do not speak, yet a path is worn beneath them.

—— 《Records of the Historian》

Yiqun Liu
Department of Computer Science and Technology
Tsinghua University
2011/3/22
Web Hyperlink Analysis

• Major functions of hyperlink analysis
 – Page quality estimation with hyperlink analysis
 – Page content extension with hyperlink analysis
Outlines

• Web hyperlink graph structures
 – Scale, connectivity, topology
• HITS algorithm
• PageRank algorithm
Web as a directed graph
Web hyperlink graph structures

- Vertex set of Web graph
 - Quantity estimation: difficult
 - very high increase speed
 - dynamic contents/links: SERP, Ajax pages

![Graph showing the increase in the number of websites and pages from 2006 to 2010. The x-axis represents the years (2006.12, 2007.12, 2008.12, 2009.12, 2010.12), and the y-axis represents the number of websites in millions. The graph shows a significant increase in the number of websites and pages from 2006 to 2008, followed by a decrease in 2009 and 2010. The percentage increase and decrease over each year are also indicated, with the highest increase in 2008 (91.4%) and the highest decrease in 2010 (-41.0%).]
Web hyperlink graph structures

• Edge set of Web graph
 – Quantity estimation: even more difficult
 • Automatically generated hyperlinks: advertising links, search result links, navigational links, ...
 – Estimation with popular Web corpuses
 • AltaVista: 1999, 203M pages, 1.466B hyperlinks
 • ClueWeb: 2009, 1.041B pages, 7.944B hyperlinks
 • SogouT: 2008, 139M pages, 3.340B hyperlinks
 – #(edge set) is about ten times the number of #(vertex set)
Attributes of Web graph

• Connectivity of Web graph
 – Basic concepts
 • Strongly Connected Component
 • Weakly Connected Component
Attributes of Web graph

- Size distribution of SCC/WCC

\[\log(\text{Number}) = -2.54 \cdot \log(\text{Size}) + C \]
Attributes of Web graph

• Power law distribution
 – Distribution of SCC/WCC sizes in Web graph
 \[\text{Number} = C' \cdot \text{Size}^{-2.54} \]
 – Zipf law in text corpuses
 \[P_i \cdot i = C'' \quad P_i = C'' \cdot i^{-1} \]
 – A wide variety of natural and man-made phenomena follow a power law:
 • frequencies of family names, sizes of craters on the moon and of solar flares, the sizes of power outages, earthquakes, and wars
Attributes of Web graph

• Topology of Web graph
 – A bow-tie structure
 – Core: the largest SCC
Attributes of Web graph

- In-degree distribution of Web graph
 - Indegree: number of in-links for a Web page
 - Popularity
 - Power exponent 2.09
 - Pages with large in-degree (most popular pages) are quite rare
Attributes of Web graph

• Out-degree distribution of Web graph
 – Out-degree: number of out-links on Web page (not including self hyperlinks)
 – power exponent 2.72
 – Not exactly follow power law distribution

• Pages without hyperlinks are rare
Attributes of Web graph

• Semantic meanings of hyperlinks

- recommendation

- topic relevance

• Possible problems
 – Navigational links
 – Advertising links
 – Registration links
Hyperlink analysis algorithms

- Hyperlink analysis
 - Purpose: quality estimation based on hyperlink structure
 - Input: Web graph
 - Output: page importance
 - Algorithms:
 - PageRank, Inverse-PageRank
 - TrustRank, Anti-TrustRank, DiffusionRank
 - BrowseRank
 - HITS
Outlines

• Web hyperlink graph structures
• HITS algorithm
• PageRank algorithm
HITS: design and implementation

• About HITS algorithm
 – Hyperlink-Induced Topic Search
 – Jon Kleinberg (1971-)
 – Cornell University
 – MacArthur fellowship (genius award)
 – Member of the National Academy of Engineering and the American Academy of Arts and Sciences
HITS: design and implementation

• Basic ideas
 – IBM clever system
 – Page quality can be estimated with the following two aspects
 • Authority score
 • Hub score
HITS: design and implementation

• Basic ideas (cont.)
 – Examples:
 • Which is a “good” paper
 • Which is an “important” city
 – Authority cannot be estimated among topics
 – HITS: hyperlink analysis for certain topics
 – Link structure in relevant document set
 • Pro: easy to combine with content retrieval results
 • Con: on-line computing
HITS: design and implementation

- Algorithm

1. Text Retrieval for query \(Q \)
2. For retrieval result set \(R \), construct \(G \) which is composed of \(R \), pages linked by \(R \) and pages linking to \(R \).
3. For each node \(n \) in \(G \), initial \(A(n) = 1 \) and \(H(n) = 1 \)
4. Iteration

\[
A^{(k)}(n) = \sum_{m_i \Rightarrow n} H^{(k-1)}(m_i)
\]

\[
H^{(k)}(n) = \sum_{n \Rightarrow m_i} A^{(k)}(m_i)
\]
HITS: design and implementation

• Iteration Process

- End of iteration: the result vector converges
HITS: design and implementation

• Iteration process (cont.)
 – Adjacent Matrix \(M \)
 \[
 m_{i,j} = \begin{cases}
 1 & \exists (i, j) \in \text{Graph} \\
 0 & \text{otherwise}
 \end{cases}
 \]
 – \(A(n) \) and \(H(n) \)
 \[
 A^{(k)}(n) = \sum_{m_i \rightarrow n} H^{(k-1)}(m_i) \Rightarrow \quad \tilde{A}^{(k)} = M^T \cdot \tilde{H}^{(k-1)}
 \]
 \[
 H^{(k)}(n) = \sum_{n \rightarrow m_i} A^{(k)}(m_i) \Rightarrow \quad \tilde{H}^{(k)} = M \cdot \tilde{A}^{(k)}
 \]
HITS: design and implementation

• Iteration process (cont.)

\[A^{(k)}(n) = \sum_{m_i \Rightarrow n} H^{(k-1)}(m_i) \Rightarrow \tilde{A}^{(k)} = M^T \cdot \tilde{H}^{(k-1)} \]

\[H^{(k)}(n) = \sum_{n \Rightarrow m_i} A^{(k)}(m_i) \Rightarrow \tilde{H}^{(k)} = M \cdot \tilde{A}^{(k)} \]

\[\tilde{A}^{(k)} = M^T \cdot \tilde{H}^{(k-1)} = M^T \cdot M \cdot \tilde{A}^{(k-1)} = M^T \cdot M \cdot M^T \cdot \tilde{H}^{(k-2)} = (M^T \cdot M)^2 \cdot \tilde{A}^{(k-2)} = \ldots = (M^T \cdot M)^{k-1} \tilde{A}^{(1)} = (M^T \cdot M)^{k-1} M^T \cdot \tilde{H}^{(0)} = (M^T \cdot M)^{k-1} M^T z \]

\[\tilde{H}^{(k)} = M \cdot \tilde{A}^{(k)} = M \cdot M^T \cdot \tilde{H}^{(k-1)} = M \cdot M^T \cdot M \cdot \tilde{A}^{(k-1)} = (M \cdot M^T)^2 \cdot \tilde{H}^{(k-2)} = \ldots = (M \cdot M^T)^{k-1} \tilde{H}^{(1)} = (M \cdot M^T)^{k-1} M \cdot \tilde{A}^{(1)} = (M \cdot M^T)^{k} \tilde{H}^{(0)} = (M \cdot M^T)^{k} z \]
HITS: design and implementation

• Problems with HITS
 – Noises introduced by text retrieval process
 • some documents are not relevant at all
 • Topic drifting (caused by partially relevant documents)
 – Efficiency problem
 • On-line computation
 • Connectivity server
 – Not widely-adopted by search engines
 • Other applications: SNS
Outlines

• Web hyperlink graph structures
• HITS algorithm
• PageRank algorithm
PageRank: design and implementation

• About PageRank
 – Named after Larry Page

 Internet + = Google

 – Evaluating the importance of Web pages
PageRank: design and implementation

• Basic ideas
 – Hyperlink as voting
 – Pages with many votes are high-quality ones
 – In-degree: each vote is treated the same
 – PageRank: high quality pages’ votes are more important

• How to define “quality”
 – HITS: authority value, hub value
 – PageRank: probability of visiting
PageRank: design and implementation

- How to estimate the probability of visiting
 - By analyzing Web access logs
 - Estimating the probability of visiting
 - Estimating stay time
 - A random walk model
 - Simulation of Web navigation
 - Randomness in
 - Where to start
 - Which hyperlink to choose

How to collect?
Privacy issues
• Random Explorer Ver. 1.0
 – No address bar, no back, no forward. only “Surprise Me”
 • Randomly leading to a page

• A trained monkey
 – click “Surprise Me”
 • possibility = α
 – random click hyperlinks
 • possibility = $1 - \alpha$
PageRank: design and implementation

- Random walk model
 - In the process of the trained monkey using “Random Explorer 1.0” to surf the Web, what is the probability of page A being visited?
 - Source 1: leading to A by “Surprise Me”
 - \(P_1(A) = \frac{1}{N} \) (\(N \) is the total number of Web pages)
 - Source 2: leading to A by hyperlinks
 - \(P_2(A) = P(P_1 \rightarrow A) + P(P_2 \rightarrow A) + \ldots + P(P_k \rightarrow A) \) (\(P_1, P_2, \ldots, P_k \) are the pages which connect to A)
 - \(P(P_i \rightarrow A) = \frac{P(P_i)}{\text{outdegree}(P_i)} \)
PageRank: design and implementation

- The probability of visiting A under random walk model is the PageRank of A

\[
\text{PageRank}(A) = \frac{1}{N} \sum_{P_i \Rightarrow A} \frac{\text{PageRank}(P_i)}{\text{Outdegree}(P_i)} + \alpha \cdot \frac{1}{N} + (1 - \alpha) \cdot \sum_{P_i \Rightarrow A} \frac{\text{PageRank}(P_i)}{\text{Outdegree}(P_i)}
\]
PageRank: design and implementation

- PageRank (a simplification algorithm)
 1. For Web graph G, the vertex size of G is N
 2. For each node \(n \) in \(G \), its initial \(PR^{(0)}(n) = \frac{1}{N} \)
 3. For \(k = 1, 2, 3, \ldots, TN \), for each node \(n \) in \(G \):
 \[
 PR^{(k)}(n) = \alpha \cdot \frac{1}{N} + (1 - \alpha) \cdot \sum_{P_{i} \rightarrow n} \frac{PR^{(k-1)}(P_{i})}{Outdegree(P_{i})}
 \]
 4. Output the results.

PageRank from pages which connects to \(n \)
PageRank: design and implementation

- Example
 - Initial: 0.25, 0.25, 0.25, 0.25
 - $\alpha = 0.2$

\[
PR^{(1)}(A) = 0.2 \cdot \frac{1}{4} + (1 - 0.2) \cdot \left(PR^{(0)}(D) \big/ \text{Outdegree}(D) \right) = 0.05 + 0.8 \cdot \frac{1}{4} = 0.25
\]

\[
PR^{(1)}(B) = 0.2 \cdot \frac{1}{4} + (1 - 0.2) \cdot \left(PR^{(0)}(A) \big/ \text{Outdegree}(A) \right) = 0.05 + 0.8 \cdot \frac{1}{4} = 0.15
\]

\[
PR^{(1)}(C) = 0.2 \cdot \frac{1}{4} + (1 - 0.2) \cdot \left(PR^{(0)}(A) \big/ \text{Outdegree}(A) \right) = 0.05 + 0.8 \cdot \frac{1}{4} = 0.15
\]

\[
PR^{(1)}(D) = 0.2 \cdot \frac{1}{4} + (1 - 0.2) \cdot \left(PR^{(0)}(B) \big/ \text{Outdegree}(B) + PR^{(0)}(C) \big/ \text{Outdegree}(C) \right)
\]
\[= 0.05 + 0.8 \cdot \left(\frac{1}{4} + \frac{1}{4} \right) = 0.45\]
PageRank: design and implementation

<table>
<thead>
<tr>
<th>Iteration</th>
<th>PR(A)</th>
<th>PR(B)</th>
<th>PR(C)</th>
<th>PR(D)</th>
<th>SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.2500</td>
<td>1.0000</td>
</tr>
<tr>
<td>#2</td>
<td>0.2500</td>
<td>0.1500</td>
<td>0.1500</td>
<td>0.4500</td>
<td>1.0000</td>
</tr>
<tr>
<td>#3</td>
<td>0.4100</td>
<td>0.1500</td>
<td>0.1500</td>
<td>0.2900</td>
<td>1.0000</td>
</tr>
<tr>
<td>#4</td>
<td>0.2820</td>
<td>0.2140</td>
<td>0.2140</td>
<td>0.2900</td>
<td>1.0000</td>
</tr>
<tr>
<td>#5</td>
<td>0.2820</td>
<td>0.1628</td>
<td>0.1628</td>
<td>0.3924</td>
<td>1.0000</td>
</tr>
<tr>
<td>#20</td>
<td>0.3144</td>
<td>0.1758</td>
<td>0.1758</td>
<td>0.3341</td>
<td>1.0000</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>0.3158</td>
<td>0.1762</td>
<td>0.1762</td>
<td>0.3319</td>
<td>1.0000</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#99</td>
<td>0.3156</td>
<td>0.1762</td>
<td>0.1762</td>
<td>0.3320</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
PageRank: design and implementation

• Problems with the simplified PageRank
 – Dead end pages
 • Pages without out-links
 • TXT, DOC, JPG, …
 – Surprise Me is the only option
 • A virtual out-link is added from the dead end page to each pages in G
 • The PageRank of the dead end page is equally divided by all pages in G
 – How to improve?

Surprise Me!
• The standard PageRank algorithm

1. For Web graph G, the vertex size of G is N

2. For each node n in G, its initial PageRank $PR^{(0)}(n) = \frac{1}{N}$ and its temporal variable $I(n) = \frac{\alpha}{N}$

3. For $k = 1, 2, 3, \ldots, TN$, for each node n in G if $Outdegree(n) > 0$, we have:

$$I(P_i) = I(P_i) + (1 - \alpha) \cdot \frac{PR^{(k-1)}(n)}{Outdegree(n)}$$

\[\forall P_i, \text{ if } n \Rightarrow P_i, \]

Different from the simplified algorithm
• The standard PageRank algorithm (cont.)

 – If $\text{Outdegree}(n) = 0$, we have

\[
\forall P_i \in G, \quad I(P_i) = I(P_i) + (1 - \alpha) \cdot \frac{PR^{(k-1)}(n)}{N}
\]

Different from the simplified algorithm

– PR: $PR^{(k)} = I$

– $I = (\frac{\alpha}{N}, \frac{\alpha}{N}, \frac{\alpha}{N}, \ldots, \frac{\alpha}{N})$

4. Output results
PageRank: design and implementation

• The standard PageRank algorithm (cont.)
 – Standard PageRank v.s. Simplified PageRank
 • A virtual out-link is added from the dead end page to each pages in G
 – The structure of Web graph
 • original adjacent matrix M
 • improved adjacent matrix A

\[
m_{i,j} = \begin{cases}
1 & \exists (i, j) \in \text{Graph} \\
0 & \text{otherwise}
\end{cases}
\]

\[
a_{i,j} = \begin{cases}
\frac{1}{\sum_j m_{i,j}} & \exists (i, j) \in G \\
\frac{1}{n} & \sum_j m_{i,j} = 0 \\
0 & \text{otherwise}
\end{cases}
\]
The standard PageRank algorithm (cont.)

- If $I = (1,1,\ldots,1)$, then the algorithm can be rewritten as:

$$ PR^{(k)} = \alpha \cdot \frac{1}{N} \cdot I + (1 - \alpha) \cdot A^T PR^{(k-1)} $$

- Problem: A is a sparse matrix

 - size: $N \times N$, N is the number of vertexes in G
 - number of non-zero elements: M, M is the number of edges in G
 - $M < N$ (M is about ten times the number of N)
 - $M << N \times N$
PageRank: design and implementation

- PageRank implementation
 - Input: Web graph G (size of vertex set is N, including all hyperlinks), parameter α, maximum number of iteration M;
 - How to record G
 - only non-zero elements in A is recorded
 - Page A -> Page B
 - Page A -> Page C
 - ...

- I: a temporal record of PageRank for each node
- S: a temporal record of PageRank of all dead ends
PageRank: design and implementation

- PageRank implementation (cont.)

1. For each record $E(i, j)$ in document D,

$$\text{Outdegree}(i) = \text{Outdegree}(i) + 1$$

2. For $n = 1, 2, 3, \ldots , N$

$$PR^{(0)}(n) = \frac{1}{N}, \quad I(n) = \frac{\alpha}{N} \quad S^{(1)} = S^{(1)} + PR^{(0)}(n)$$

1. For $k = 1, 2, 3, \ldots , TN$

 a. For each record $E(i, j)$ in document D,

 $$I(j) = I(j) + (1 - \alpha) \cdot \frac{PR^{(k-1)}(i)}{\text{Outdegree}(i)}$$

 a. For $n = 1, 2, 3, \ldots , N$

 $$PR^{(k)}(n) = I(n) + (1 - \alpha) \cdot \frac{S^{(k)}}{N} \quad I(n) = \frac{\alpha}{N} \quad S^{(k+1)} = S^{(k+1)} + PR^{(k)}(n)$$
PageRank: design and implementation

- PageRank implementation (cont.)
 - Number of visiting D

 $$(TN+1)(N+L)$$

 - Storage: result PR (size = N), temporal variable I (size = N); temporal variable S (size = TN)
 - Parameter: $\alpha=0.15$, $TN=20\sim30$
PageRank: design and implementation

- Limitation of PageRank algorithms
 - PageRank doesn’t work well in retrieval experiments
 - Upstill: introducing of PageRank slightly improves navigational performance
 - Amento: PageRank/HITS doesn’t perform well on medium scale datasets.
 - Our experiments: PageRank is not so useful on TREC benchmark
 - Possible reasons: data size, data quality
Thank you!

Questions or comments?