
Is learning to rank effective for Web search?
Min Zhang, Da Kuang, Guichun Hua, Yiqun Liu, Shaoping Ma

State Key Laboratory of Intelligent Technology and Systems,
Tsinghua National Laboratory for Information Science and Technology,

Department of Computer Science and Technology, Tsinghua University, Bejing 100084, China.
+86-10-62792595

z-m@tsinghua.edu.cn

ABSTRACT
LETOR, the benchmark collection for learning to rank, helps
make comparative study on different approaches in experimental
research. Since the collection is constructed mainly based on
TREC datasets, queries and documents in LETOR differ from true
Web search scenario on some aspects, such as its incomplete link
information, limited documents’ domain, and lack of user click
information. Hence the observations derived by the collection
could be different from that in real Web environment. This paper
empirically studies the effectiveness of the state-of-art learning to
rank algorithms, especially in Web search scenario. Besides
LETOR, a Web search collection is constructed based on the
search log of a commercial search engine. Five approaches have
been studied, including linear regression, RankBoost, ListNet, top
k optimization of ListMLE, and SVM-MAP. Comparative study
has been made among algorithms and across different datasets.
Furthermore, the effects of learning to rank algorithms are
compared with that of content-based and link-based ranking
features. Essential differences have been observed and analyzed
in the paper in terms of the effectiveness and stability of the
algorithms and the feature selection. We believe this study will
help the Web search community for better knowledge about
whether and to what extent learning to rank algorithms are
effective in real applications.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval Model

General Terms
Algorithms, Performance, Experimentation, Security, Human
Factors, Standardization, Languages, Theory, Legal Aspects,
Verification.

Keywords
learning to rank; Web search; LETOR; feature selection.

1. INTRODUCTION
How to integrate multiple features into the final model is an

essential problem in information retrieval. Learning to rank
focuses on using machine learning algorithms for better ranking,
In previous work, many learning to rank algorithms have been
proposed. And rich study of loss function has been made. To help
researchers perform comparative study on different approaches
and features, a benchmark collection LETOR has been built by
Microsoft Research Aisa (MSRA), which is constructed mainly
based on TREC collection. This collection has provided a good
test bed for learning to rank comparative study and has been used
by more and more researchers (e.g. [4][10][13][14]). 1
Rank integration is also an important issue in Web search.
Generally a search engine could have hundreds or even thousands
of features and parameters to tune. To find the optimized final
ranking function is not a trivial task. Therefore learning to rank is
also expected to be quite helpful in Web search scenario. TREC
data is a good test bed for experimental information retrieval;
however it is different from the real Web search environment in
some non-ignorable aspect. First the documents collected are
restricted to the .gov domain, the characteristics of which are
quite different from the .com domain which is the dominant part
in the Web. Second, the links in the collection are partial and the
link graph built based on the data is observed to be incomplete.
Hence in past TREC experiments, most link-based analysis
approaches were less useful, which definitely differs from the
reality in Web search. Furthermore, the queries were manually
generated in 2003 and 2004, which were five or six years ago.
Therefore they are most probably different from what users want
today in search engines. Finally, the collection is lacking of click
information, which is an essential part of user behavior analysis in
current Web search application. Considering the above issues,
using TREC-based LETOR datasets is not suitable for the true
Web search scenario related comparative study, although it is still
informative. Hence in this work, we constructed a Web search
dataset as complement of LETOR for learning to rank
comparative empirical study. Queries in the Web search dataset
are sampled from two months’ search log in a commercial search
engine. The relevance judgment is annotated by traditional
pooling technology, where the top 100 results given by three
dominant search engines are used in the construction of the pool.
Features of content, link analysis and click through information
are extracted for each document with respect to each query.
The comparative study is made in this paper in several aspects.
First is the empirical comparison on five classical learning to rank

1 Supported by the Chinese National Key Foundation Research &
Development Plan (2004CB318108), Natural Science Foundation
(60621062, 60503064, 60736044) and National 863 High Technology
Project (2006AA01Z141).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’09 workshop LR4IR’09, July 19–23, 2009, Boston, US.
Copyright 2009 ACM ……….…$5.00.

algorithms in LETOR and the Web search dataset respectively.
Second is the relative performance comparison on the two
different test collections. Third is the comparative study on Web
search scenario, such as the impact of general features, web
search and usage specific information. Essential differences have
been observed and analyzed. To the best of our knowledge, it is
the first study to make such kind of comparative empirical study
on learning to rank algorithms for Web search, and we believe the
observations will lead to some progress in adopting learning to
rank research to real application.
The rest of the paper is constructed as follows. We first give a
brief introduction to the related work in section 2. Section 3
describes the learning to rank algorithms we studied in this work.
Then we present the empirical comparative study on section 4,
including methodology, experimental settings such as the
construction of the Web search dataset etc, comparative
experimental results and analyses. Conclusions and the future
work are finally addressed in section 5.

2. RELATED WORK
The state-of-the-art learning to rank methods can be classified
into three categories: pointwise, pairwise and listwise. In
pointwise methods, such as Pranking with ranking [6] and the
linear regression which is also popularly used in general result
integration, the relevance score is calculated based on the features
of a single document with respect to a query. Such algorithm try
to find the best fit for each document in terms of relevance. In
pairwise methods, such as Ranking SVM [1], RankBoost [3][14],
they take document pairs w.r.t. a query as instances and use
machine learning methods to train the models on the pairs. The
optimization object is to find the best document pair preferences.
In listwise methods, such as ListNet [2], listMLE [13] and SVM-
MAP [12][15], they take document lists w.r.t. a query as instances
to train ranking models. The best ranked list is the final goal of
learning.
 In this paper, we do not prefer to propose new learning to rank
algorithms, but focus on a comprehensive comparative study of
the state-of-the-art approaches in Web search scenario. At least
one algorithm in each category is selected according to the
learning success and popularity reported in previous work. Hence
linear regression for pointwise, RankBoost for pairwise, and
ListNet, ListMLE and SVM-MAP for listwise approaches are
studied. Since linear regression is not specific to learning to rank
study and is familiar to all the researchers, redundant description
is not necessary in this paper. A detailed introduction on the rest
four algorithms is given in the next section.
Out of the learning to rank test collections, currently LETOR is
the only one benchmark dataset, which is constructed by MSRA
[7][8]. Three versions of LETOR datasets released in early 2007,
late 2007 and late 2008, respectively. Detailed information can
be found on its website2. Qin et al discussed on how to make
LETOR more useful and reliable [10]. Minka et al pointed out the
selection bias in the LETOR datasets, including the bias on the
sampled document, etc [9].
On LETOR website, baseline results of the state-of-the-art
learning to rank algorithms are given, but no insight comparative

2 http://research.microsoft.com/en-us/um/beijing/projects/letor/

analysis has been made on the effects of the approaches. These
baseline results are also helpful to verify the correctness and
reliability of the implementation of the algorithms in this paper.

To the best of our knowledge, there is no comparative study on
learning to rank approaches in true Web search scenario. The
comparative study on learning to rank algorithms for Web search
in this paper will help the information retrieval research and
industry communities better understand whether and to what
extent learning to rank approaches are effective in real
applications.

3. LEARNING TO RANK ALGORITHMS
3.1 Model settings
In this section, we describe the formal model setting for the
algorithms. All the following approaches take the same setting
here unless specified otherwise.
Define:

• The set of queries Q ={ q(1) , q(2) ,…, q(m)}.
•)(in is the num of documents w.r.t)(iq .
• Each query is associated with a list of documents

},,,{)(
)(

)(
2

)(
1

)(i
in

iii dddd K= w.r.t.)(iq .

• A list of ground-truth labels },,,{)(
)(

)(
2

)(
1

)(i
in

iii yyyy K= w.r.t.)(iq ,

where)(i
ry is the label of the document ranked at position r in

the list y(i).
• And a list of feature vectors x(i) which is created based on q(i)

and d(i), },,,{)(
)(

)(
2

)(
1

)(i
in

iii xxxx K= .

3.2 RankBoost
Freund, Y. et al applied the boosting approach to the field of
learning to rank and proposed the RankBoost algorithm [3]. The
algorithm belongs to the pairwise branches. It emphasizes the
relative ranking order between two documents, and the preference
matrix is defined based on the document pairs. Similarly to other
boosting approaches, RankBoost trains a weak ranker and update
the ranking function in each round of iteration. During the update,
the algorithm increases the weights of correctly ranked document
pairs and decreases the weights in another case [14]. The details
of the algorithm are shown below.

Algorithm 1. RankBoost:
Definition:
χ : Document set

D: Distribution over χχ × , e.g. if 1x ranks higher than 0x , then
() 1, 10 =xxφ , and () 1, 01 −=xxφ .

At last () (){ }1010 ,,0, xxMaxZxxD φ∗= where Z is the
normalization factor which ensures ()

()
1,

10 ,
10 =∑

×∈ χχxx
xxD

Given:
1. The distribution D over χχ × ;
2. The number of iteration T.

Initialize: DD =1 .
For t = 1…T :

(1) Train weak learner using distribution
tD .

(2) Get weak ranking Rht →χ: .
(3) Choose Rt ∈α .

(4) Update: () () () ()()()
t

tttt
t Z

xhxhxxD
xxD 1010

101
exp,

,
−

=+

α

where tZ is a normalization factor (chosen so that 1+tD
will be a distribution).

Output the final ranking: () ()∑ =
=

T

t tt xhxH
1
α

3.3 ListNet
ListNet is a listwise ranking algorithm. Unlike pairwise
approaches which focus on pairs of objects in learning, lists of
objects are used as "instances" in listwise approach, and the
optima is try to find in the level of the whole list. Cao et al.
defines a formulation of permutation probability, and employs
Neural Network model and the Cross Entropy loss as the listwise
loss function in Gradient Descent [2]. According to previous work,
ListNet outperforms most pairwise methods such as RankSVM,
RankBoost, because it matches the ranking scenario and trains the
model on document list directly [2]. In ListNet, permutation
probability is defined to represent the likelihood of a permutation
(ranking list) given the ranking function. And Top one probability,
which equals to the sum of permutation probabilities of
permutations in which the object is ranked on the top of the list, is
introduced ([2]) to represent the distance (listwise loss function)
between the two score lists.
We implement a linear Neural Network in experiment using top
one probability. Hence the ListNet algorithm is shown as
following Algorithm 2.

Algorithm 2. ListNet

Input: training data (x(1), y(1)), (x(2), y(2)), … , (x(m), y(m)).
Parameter: initialized linear model ω, number of iterations T,
learning rate η, and linear mapping parameter α from ground-truth
labels to scores.

for t=1, …, T do
 for i=1, …, m do

(1) Compute score of each document j with current ω:
>=<)()(,)(i

j
i

j xxf ωω
(2) Compute gradient:

() ()()()()

()()()()

() ()()()

()()()

∑
∑

∑
∑

=

=

=

=

⋅

⋅
−=Δ i

i

i

i

n

j
i
j

n

j
i
j

i
j

n

j
i
j

n

i
i
j

i
j

y

yx

xf

xfx

1

1

1

1

exp

exp

exp

exp

α

α
ω

ω

ω

(3) Update: ωηωω Δ⋅−=
end for

end for
Output Neural Network model ω

3.4 ListMLE-top k probability optimization
ListMLE, as a ranking algorithm, is a variation of ListNet and
also belongs to listwise approach. Xia et al. re-examines the
statistical properties of loss functions, and introduces a likelihood
loss, with better properties in soundness and convexity, as the
listwise loss function in gradient descent [13].
We improve the traditional ListMLE algorithm using Top k
probability optimization. Then the improved algorithm is
described as follows.

Algorithm 3. ListMLE-topk
Input: training data (x(1), y(1)), (x(2), y(2)), … , (x(m), y(m)).
Parameter: initialized linear model ω, tolerance rate ε, learning
rate η, and linear mapping parameter α from labels to scores.
repeat
 for i=1, …, m do

(1) Compute score of each document j with current ω:
>=<)()(,)(i

j
i

j xxf ωω
(2) Compute gradient:

() ()
()()()()

()
()()()() ()

()∑
∑

∑
=

=

=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

⋅
=Δ

k

t
i

tyn

tk
i

ky

n

tk
i

kyky x
xf

xfx
i

i

1 exp

exp

ω

ωω

(3) Update: ωηωω Δ⋅−=
end for
Compute likelihood loss:

()
()()()

()
()()()()∑ ∏

∑= =

=

−=
m

i

k

t n

tk
i

ky

i
ty

i

xf

xf
L

1 1 exp

exp
log

ω

ω

until change of likelihood loss is below ε times the previous loss
Output Neural Network model ω
(The only difference between ListMLE and ListMLE-topk is:
when calculating likelihood loss L, t is iterated from 1 to n(i) in
ListMLE, and here t=1 to k in ListMLE-topk.)

3.5 SVM-MAP
SVM-MAP is a structural Support Vector Machine method which
optimizes a differentiable upper bound of MAP in the predicted
rankings. The optimization is performed on a working set of
constraints, which is a finite subset of the infinite constraints in
the structural SVM. The most violated constraint is selected and
added to the working set ࣱ iteratively, until no constraint is
violated in the sense of desired precision ε. [15]
For simplicity, we omit the superscript i in the following symbols
information, such as q(i) , d(i),)(i

rd etc, w.r.t to the ith query, when
there is no ambiguity.

Let QC and QC be the set of relevant and irrevelant documents for
query q. Define:

() () ()()drankdrankMAPdd ˆ,1ˆ, −=Δ

∑ ∑∈ ∈
−

⋅
=Ψ Q

i
Q

jCdi Cdj jiijQQ
dqdqy

CC
dq

: :
)),(),((1),(φφ

where

⎪
⎩

⎪
⎨

⎧

−

=

ij

ji

ji

ij

dofaheadrankedisdif

rankequalhavedanddif

dofaheadrankedisdif

d

1

0

1

A constraint named d̂ is equivalent to:

 () () () iii
T

ii
T dddqwdqw ξ−Δ+Ψ≥Ψ ˆ,ˆ,, .

 Then the algorithm is shown below:

Algorithm 4. SVM-MAP [15]

Input: training data (x(1), y(1)), (x(2), y(2)), … , (x(m), y(m)).
Parameter: tradeoff parameter C, precision ε.
For all i=1, …, n, iࣱ ՚
repeat
 for i=1, …, n do

(1) () () () ()ii
T

i
T

i dqwdqwddwdH ,,,; ψψ −+Δ≡

(2) Compute);(maxargˆ wdHd Dd∈=

(3) Compute ()};max,0max{ wdH
iWwi ∈=ξ

(4) if () εξ +> iwdH ;ˆ then

}ˆ{dww ii ∪←

 Ui i
n

i iw wwover
n
cwoptimizew =+← ∑ =≥ 1

2
0, 2

1min ξξ

end if
end for

until no ࣱ i has changed during iteration
Output w

4. COMPARATIVE EMPIRICAL STUDIES

4.1 Methodology
A collection comes from the web search engine scenario is used,
called Web search data (shown as ‘WebSE’ for short). In this
paper, LETOR dataset is being used for learning algorithms
baseline study and for learning to rank algorithm verification.
And the WebSE dataset is taken for further comparative study on
the affects of learning to rank approaches in true Web search
scenario. Detailed information about the two datasets is described
in the following section 4.2.
In this paper, a total of five algorithms have been studied, namely
linear regression, RankBoost, ListNet, ListMLE-topk, and SVM-
MAP3. Linear regression is a kind of pointwise learning to rank
methods, and is the one commonly used to combine multiple
results. RankBoost is a typical pairwise approach for learning to
rank. And the latter three are all listwise approaches. Besides the
five ranking algorithms, the results generated by using content-
based BM25 feature are also given in the two collections, and in
WebSE dataset, there is one more result compared which is that of
using PageRank for ranking. Since the PageRank score is
computed on the partial link graph in LETOR data which makes
the ranking not reliable, the comparison on PageRank in LETOR
makes no sense.
The comparative study is made in this paper in several aspects.
First is the empirical comparison of different algorithms on the
same dataset. Second is the comparative study on Web search
scenario, e.g. the impact of Web specific features.
Five-fold cross validation has been implemented in both
collections. The k-fold validation in Web search dataset is similar
to that in LETOR [7]. Each data set is divided into five parts
equally. In each loop, three folds are selected for training, one
fold for validation, and one for test. The experimental results
shown in this paper are that on test set unless specified otherwise.

4.2 Experimental settings
4.2.1 LETOR benchmark dataset
LETOR is a standard benchmark for learning to rank research
which has been constructed by Microsoft Research Asia [7][8].
LETOR is built mainly based on TREC collection, including

3 In our experiments, the online SVM-MAP package is used,

which can be found at http://projects.yisongyue.com/svmmap/ .

queries, retrieved documents, and the relevance judgments.
Furthermore, 64 features have been extracted based on the top
1000 documents by BM25 for each query.
In this experiment, LETOR 3.0 is adopted, which contains seven
datasets, namely named page finding (NP) 2003 and 2004, home
page finding (HP) 2003 and 2004, topic distillation (TD) 2003
and 2004, and OHSUMED. Since OHSUMED is the subset of
MEDLINE collection and has little correlation with Web search,
only the former six datasets have been used in our experiments,
and we keep the name of the benchmark collection as LETOR in
this paper for simplicity.

4.2.2 Web search dataset
The queries in the Web Search dataset are sampled from search
logs by a commercial Chinese search engine. The search log is a
faction of the log from January to February, 2009, which contains
totally 108,945,644 sessions and 15,585,010 unique queries.
Finally there are totally 614 queries and the corresponding
relevance judgment results, covering hot queries (queries with
extremely high frequency), common queries (queries with high
frequency) and rare queries (queries with low frequency). The
principle of constructing query sets is to find a balance between
the expressiveness of Web search scenario and the usability of the
query for information retrieval research.
Following Figure 1 shows the comparison on statistics of the
sample queries for WebSE data and all the queries in log data in
terms of unique queries number. Figure 2 gives the logarithmic
queries’ frequency distribution of the WebSE dataset.

proportion of number of queries（%）

0

10

20

30

40

50

60

70

80

90

100

1k~10k 100~1k 10~100 5~10 < 5

query search frequency intervals

all queries
sampled queries

Figure 1 Comparison on the distribution of the number of
unique queries (sampled v.s. all queries)

1

10

100

1000

10000

1 51 101 151 201 251 301 351 401 451 501 551 601

(logarithmic) frequencies of the samples
queries in the search log

Figure 2 Frequency distribution of the queries in the WebSE

Shown by the comparison on unique queries proportion in Figure
1, the sampled queries for WebSE dataset make a good
representation of the original whole query sets, except for the

queries which frequencies are less than 5. Although the number of
rare queries (whose frequency is less than 5 in the search log in
this paper) is large, complete match of the original query
proportion will lead to a strong bias that the rare queries will be
over emphasized. Hence less rare queries have been selected in
the WebSE dataset. According to figure 2, the frequency
distribution of the constructed WebSE queries well fits the
knowledge that the volume distribution of Web search queries
follows the power law [11].
The results relevance judgment is manually annotated by three
skilled laboratories based on the classical pooling techniques in
information retrieval evaluation. The candidates in the pool are
collected by the three most popular commercial search engines in
China with the top 100 returned results lists. And the four-level
relevance score have been assigned to each document.
The documents sampling strategy in WebSE dataset is to select
the top 200 results according to a simple linear combination of
content-based BM25 ranks and PageRank ranks. The introducing
of PageRank in the documental samples is based on the Web
search application background, in which the link-based ranking
plays an important role.
The features extracted from the sampled documents for each
query are in two forms. For global features, such as IDF,
PageRank etc, the background document collections are used
which is the complete crawling result of Chinese Web pages in
the Web. The computation of the global features is done with the
help of a Chinese commercial search engine. For local features,
such as TF, document length etc, is calculated directly from the
sampled documents. Furthermore, features by user click
information are also implemented in the WebSE dataset. By doing
so, the dataset is constructed to simulate the true Web search
scenario with the most effort.

4.2.3 Evaluation methods
Three metrics are used in this work to evaluation the performance,
i.e. p@n, MAP and NDCG@n, which are widely used in
information retrieval research and application.
p@n is the precision at top n returned results, which is defined as:

)(1@
1
∑
=

=
n

i
idrel

n
np , where rel(di) is binary, which is set to 1

when di is relevant to the query.
MAP is the mean average precision for the queries. It is a
comprehensive measure which takes both precision and recall into
consideration. The definition can be shown as:

))@()((111MAP
1 11

j

m

j

k

i
ij

j

m

j
j ipdrel

Rm
AP

m ∑ ∑∑
= ==

⋅==
,

where m is the total number of queries, Rj is the total number of
relevant documents for the jth query, k is the total number of
returned documents for the query, relj(di) and (p@i)j are the rel(di)
and p@i scores for the jth query respectively.
NDCG@n is a quite useful measure for evaluate web search and
related tasks. It takes into account the position (rank) of the
document with different relevance degree in the returned result
list, The NDCG score at top n returned results is defined as [16]:

∑
= +

−
==

n

i

drel

nn iZ
nDCG

Z
nNDCG

i

1

)(

)1log(
121@1@
 ,

where Zn is the DCG@n score of ideal result ranking list.

4.3 Comparative performance of algorithms
on LETOR data
Figure 3 (a) and (b) show the performance comparison on LETOR
collection NP/HP tasks and TD tasks respectively. Except for the
five algorithms studied in the paper, the result of using content-
based BM25 ranking function is also shown in the figure to give
more information on the relative effectiveness.

0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8

HP2003 HP2004 NP2003 NP2004

MAP
content‐BM25

Regression

RankBoost

ListNet

ListMLE‐t10

SVM‐MAP

Figure 3 (a) MAP comparison on HP and NP tasks

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

TD2003 TD2004

MAP
content‐BM25

Regression

RankBoost

ListNet

ListMLE‐t10

SVM‐MAP

Figure 3 (b) MAP comparison on TD tasks

It is clear from the figure 3 that generally speaking, linear
regression does not make improvement compared with content-
based retrieval result on HP/NP tasks, but gets better performance
on TD tasks. ListNet leads to the best performance in most cases.
Next comes the SVM-MAP in terms of performance and stability.
ListMLE-topk is not stable. The performances vary from HP/NP
tasks and TD tasks, and even changes with the same task in
different years. RankBoost are not effective compared with other
learning to rank methods. It is only a slightly better than content-
based approach and linear regression, if not worse. Hence the
listwise algorithms outperform pairwise and pointwise approaches
when evaluated with MAP measure.
Since the comparative performance among different approaches
on HP2003, HP2004, NP2003, NP2004 are generally consistent,
as well as those on TD tasks in 2003 and 2004, we only show
results on HP2004 and TD2004 in the following. If changes are
observed, more results will be given.
The following Figure 4 shows the performances on HP2004 and
TD2004. Looking at homepage finding task, the algorithms
integrate into two groups under p@n measure. The first group is
composed of SVM-MAP, ListMLE-topk and ListNet; and another
includes regression and RankBoost, which get nearly the same
performance with content-based BM25. The p@n results on
TD2004 are slightly different, where ListMLE-topk gets best

result. SVM-MAP also shows encouraging results which is
consistent with the results under MAP. One thing worth of
mention is that the p@1 results are chaotic because the metric is
too sensitive for informational queries. Hence the performance
under p@1 is less reliable.
Figure 5 shows the performances of NDCG@n on HP2004 and
TD2004 tasks. According to results on HP2004 dataset, ListMLE-
topk are the most effective algorithms in terms of NDCG@n.
SVM-MAP and ListNet are similar on the encouraging
performance. Again Rankboost and linear regression get almost
the same results. In TD2004 dataset, ListMLE-topk is no longer
the most effective, while linear regression takes the best results
instead. RankBoost performs still closely to content-based BM25
ranking, which is not useful for integrating ranks and features.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

HP2004 p@n

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10

TD2004 p@n

BM25 Regression RankBoost
ListNet ListMLE‐t10 SVM‐MAP

Figure 4 Comparison with p@n on LETOR datasets

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 2 3 4 5 6 7 8 9 10

HP2004 NDCG@n

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10

TD2004 NDCG@n

BM25 Regression RankBoost
ListNet ListMLE‐t10 SVM‐MAP

Figure 5 Comparison with NDCG@n on LETOR datasets
Comparing the results under MAP, p@n and NDCG@n measures
on LETOR datasets, several observations are drawn:
(1) SVM-MAP is a stable and effective approach in every
measure and every task, which is shown to be helpful in learning
to rank tasks. (2) ListNet comes next and is also stable in different
tasks and measures. (3) ListMLE-topk is good at home/named
page finding tasks which represent navigational search goals, but
are unstable at topic distillation (TD) task which corresponds to a
kind of informational search goals. (4) Generally speaking,
RankBoost is not effective, which is only slightly better than
content-based BM25 rank in most cases, if not worse. (5) Linear
regression does not make improvement compared with content-

based retrieval result on home page and named page finding tasks,
but get much better performance on Topic distillation tasks.

4.4 Comparative performance of algorithms
on Web search data
In comparative study on WebSE dataset, the result based on
PageRank is introduced, because such kind of link-based analysis
is generally helpful in Web search scenario. As introduced in the
section 4.2.2, the top 200 results for each query are sampled
according to a simple linear combination of content-based BM25
ranks and PageRank ranks. Based on this document set for each
query, two baseline results are given, which are ranked by BM25
scores and PageRank scores respectively. Hence there are totally
7 ranking results to study under MAP, p@n and NDCG@n
metrics, i.e. BM25, PageRank, regression, RankBoost, ListNet,
ListMLE-topk, and SVM-MAP.
Table 1 shows comparative results on WebSE dataset. The first
notable thing is the effect of PageRank, which is much better than
the result of content-based BM25 ranking that 59.10%
improvement over BM25 result is achieved. The observation is
totally different from that on LETOR 3.0 data in which PageRank
gives trivial impact and the performances, in which the
performance on all the three measures are less than 1/3 of the
performance with BM25 ranking results. It verifies the
specifications in former sections that LETOR collection differs
from the real Web search environment.
On the effects of learning to rank algorithms, ListMLE-topk gets
the best result as well as SVM-MAP, both of which achieve more
than 86%, 17% and 15% improvement over results based on
BM25, PageRank and regression, respectively. ListNet is also
effective which is only slightly worse than the two best
algorithms. Although the improvement is not as great as the
former mentioned algorithms, RankBoost gets better performance
than regression.

Table 1 MAP comparison of different algorithms.
BM: BM25, PR: PageRank, RG: linear regression, RB:
RankBoost, LN: ListNet, LM: ListMLE-topk, SM: SVM-MAP

 MAP v.s. BM (+) v.s. PR (+) v.s. RG (+)

BM 0.2702 -- -- --

PR 0.4298 59.10% -- --

RG 0.4354 61.16% 1.29% --

RB 0.4629 71.33% 7.68% 6.31%

LN 0.4894 81.13% 13.84% 12.39%

LM 0.5052 86.99% 17.53% 16.03%

SM 0.5029 86.15% 17.00% 15.50%

Figure 6 and Figure 7 gives the performance comparison in terms
of p@n and NDCG@n on WebSE dataset respectively. The
results are consistent with that have been observed with MAP
metric. The best performance is achieved by ListMLE-topk and
SVM-MAP. Then follows ListNet. And RankBoost is the least
effective but still helpful compared with linear regression and
PageRank. All of these approaches are much better than the result
of content-based BM25 in Web search scenario.

Now it is not difficult to sum up the empirical comparative results
of learning to rank algorithms on WebSE datasets. Consistent
improvements have been made in all of the five learning to rank
approaches, and the relative performance ranks of different
approaches are kept stable on all the metrics.
Define ‘>’ means ‘the performance is better than’ and ‘~’ means
‘the performance is similar to’, then the drawn is drawn that:

ListMLE-topk ~ SVM-MAP > RankBoost > linear regression
~ PageRank > BM25.

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7

1 2 3 4 5 6 7 8 9 10

Learning to Rank on Web Search Data (p@n)

BM25

PageRank

Regression

RankBoost

ListNet

ListMLE-topk

SVMMap

Figure 6 performance comparisons on WebSE with p@n

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6 7 8 9 10

Learning to Rank on Web Search Data (NDCG@n)

BM25

PageRank

Regression

RankBoost

ListNet

ListMLE‐topk

SVMMap

Figure 7 performance comparisons on WebSE with NDCG@n

4.5 Feature analysis
In previous sections, we analyzed that the ListMLE-topk result is
not stable in LETOR datasets. In this section, we discuss this
problem in terms of features.
After learning procedure is finished, features are selected with
different weights which represent the role of features in getting
final rank. The correlation between the final features’ ranks of the
two runs with ListMLE-topk algorithms on LETOR is calculated.
 Given ranki(fj) is the rank of the feature fj on the ith fold, we
define the rank of the feature fj as: rank(fj) = average{ranki(fj)}.
Note that ranki(fj) is calculated based on the normalized absolute
value of the feature’s weight on the ith fold.
The surprising result is the average correlation is only 0.6057. It
shows that the ListMLE-topk algorithm on LETOR datasets is
unstable, since arbitrary two runs of the same algorithm on the
same dataset with the same settings will lead to strongly different
final feature ranking strategies. The only difference between the
two runs is the randomly initialized linear model. Similar analysis
is made on ListNet. The encouraging result is the average
correlation between final features’ ranking strategies by two runs

is 0.9349, which shows the stability of the algorithm. Note that in
ListNet, the initial linear model is also randomly set. For SVM-
MAP, every run with the same settings keeps the same results.
Looking into details of the selected feature by different algorithms
on LETOR datasets, it is easy to find that ListNet and SVM-MAP
selected similar top 5 features, which differ from that selected by
ListMLE-topk greatly. The final generated top 5 features are
listed in Table 2.
Table 3 gives the final top-ranked features selected based on
WebSE data collection, and the corresponding final ranks of these
features selected by different algorithms on LETOR. As shown in
the Table 3, the three algorithms, namely ListMLE-topk, ListNet
and SVM-MAP, agree with each other on the final top-ranked
features on WebSE dataset. It’s also consistent with the
performance comparison result in Table 1, in which PageRank is
shown to be quite effective that only use it achieves similar result
with linear regression. But the selected top ranked features
distinctly disagree with those selected on LETOR. The main
difference lies on the features based on link analysis and user
behavior analysis, which cannot be generated on LETOR.

Table 2 Top 5 effective features learnt on LETOR

Rank ListMLE-
topk ListNet SVM-MAP

1 IDF on
URL

Sitemap based
score propagation

Sitemap based term
propagation

2 IDF on
anchor

Sitemap based
term propagation

Sitemap based score
propagation

3 IDF on
Body HostRank LMIR.ABS of

whole document

4
LMIR.JM
of whole
doc

LMIR.ABS of
whole doc

Hyperlink base
feature propagation:
weighted in-link

5 IDF on
whole doc

LMIR.JM of
whole doc

LMIR.ABS of
anchor

Table 3 Top effective features selected on WebSE and their
ranks on LETOR with different algorithms

WebSE,
3 alg. *

LETOR,
ListMLE-
topk

LETOR,
ListNet

LETOR,
SVMMAP

PageRank 1 49 37 45

BM25 on
whole doc 2 46 11 7

BM25 on
anchors 3 56 5 16

User-click
based fea. 4 -- -- --

* On WebSE collection, the three algorithms agree with each
other, hence only one column is shown for them.

5. Conclusions and future work
In this paper, we made an empirical comparative study on the
effectiveness of the state-of-the-art learning to rank algorithms for

Web search. Since the open benchmark collection LETOR have
several limitations to be representative of true Web search
scenario, a complementary dataset named WebSE is constructed
based on the two-month’s search log of a Chinese commercial
search engine. A total of five algorithms have been studied,
including linear regression, the pointwise learning approach,
RankBoost which represents pairwise methods, and listwise
algorithms ListNet, improved ListMLE with top-k probability
optimization, and SVM-MAP. Besides these algorithms, the
results of BM25 and PageRank are also adopted for comparison.
To the best of our knowledge, such comparative empirical study
for true Web search scenario has not been made before.
Several conclusions are drawn as follows.
First, learning to rank algorithms do help in Web search scenario.
(1) Consistent improvements have been made in all of the five
learning to rank approaches, and the relative performance ranks of
different approaches are kept stable on all the metrics;
(2) Define ‘>’ means ‘the performance is better than’ and ‘~’
means ‘the performance is similar to’, then the conclusion is
drawn that: ListMLE-topk ~ SVM-MAP > RankBoost > linear
regression ~ PageRank > BM25;
Second, on the final feature ranking strategies:
(1) ListMLE-topk algorithm on LETOR datasets is unstable, since
arbitrary two runs of the same algorithm on the same dataset with
the same settings lead to strongly different feature ranking
strategies for generate final ranking results;
 (2) ListMLE-topk shows a less agreement on feature selection
with ListNet and SVM-MAP, while the latter two are better
correlated;
(3) For true Web search scenario, learning algorithms agree with
each other on final feature ranking. But the selected top ranked
features distinctly disagree with those selected on the LETOR test
bed.
Finally, for Web search study, LETOR has limitations on link
analysis and user behavior features.
In the future, more issues on Web search will be studied. For
example, learning to rank based on query type classification or
query clustering. More research on feature selection will be made.
New features and algorithms are also expected.

6. ACKNOWLEDGMENTS
The algorithms of the ListNet and ListMLE are implemented at
Microsoft Research Asia (MSRA) by the second author during the
Tsinghua-MSRA computer science research practice course, and
many thanks Tao Qin, Tieyan Liu, and Hang Li for their kind
supervision. Special thanks to Hao Yu, Zijian Tong and Liyun Ru
for their great help on generating Web search collection. And we
also would like to thank anonymous reviewers who give many
valuable comments for the better representation of the paper.

7. REFERENCES
[1] Y. Cao, J. Xu, T. Liu, H. Li, Y. Huang, and H. Hon,

"Adapting ranking SVM to document retrieval", In SIGIR'06:
Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information
retrieval, pp.186-193, 2006.

[2] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang
Li. Learning to rank: from pairwise approach to listwise
approach. In ICML ’07: Proceedings of the 24th
international conference on Machine learning, pages 129–
136, New York, NY, USA, 2007. ACM Press.

[3] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences. J.
Mach. Learn. Res., 4:933-969, 2003.

[4] John Guiver, Edward Snelson. Learning to rank with
softrank and Gaussian processes. In SIGIR'08: Proceedings
of the 31th annual international ACM SIGIR conference on
Research and development in information retrieval, 2008.

[5] K., Jarvelin, J., Kekalainen. Cumulated Gain-based
evaluation of IR techniques, ACM Transactions on
Information System, 2002, 20, 422-446.

[6] K. Crammer and Y. Singer. Pranking with ranking. In NIPS
2002: Neural Information Processing Systems, pages 641-
647, 2002.

[7] T.-Y. Liu, J. Xu, T. Qin, W.-Y. Xiong, and H. Li. LETOR:
Benchmark dataset for research on learning to rank for
information retrieval. In SIGIR’07 Workshop on learning to
rank for information retrieval, 2007.

[8] LETOR, http://research.microsoft.com/en-
us/um/beijing/projects/letor/index.html.

[9] Tom Minka, Stephen Robertson. Selection bias in the letor
datasets. In proceedings of SIGIR 2008 workshop on
learning to rank for information retrieval, 2008.

[10] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. How to make
letor more useful and reliable, in proceedings of SIGIR 2008
workshop on learning to rank for information retrieval. 2008

[11] A. Spink, D. Wolfram, B. Jansen, and T. Saracevic.
Searching the Web: The public and their queries. Journal of
the American Society for Information Science and
Technology, 53(3):226-234, 2001.

[12] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun,
Large Margin Methods for Structured and Interdependent
Output Variables, Journal of Machine Learning Research
(JMLR), 6(Sep):1453-1484, 2005.

[13] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and
Hang Li. Listwise approach to learning to rank: theory and
algorithm. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, pages 1192–
1199, New York, NY, USA, 2008. ACM Press.

[14] Jun Xu and Hang Li. AdaRank: A Boosting Algorithm for
Information Retrieval, SIGIR'07: Proceedings of the 30th
annual international ACM SIGIR conference on Research
and development in information retrieval.

[15] Y. Yue, T. Finley, F. Radlinski and T. Joachims. A Support
Vector Method for Optimizing Average Precision,
Proceedings of the ACM Conference on Research and
Development in Information Retrieval (SIGIR), 2007

[16] K., Jarvelin, J., Kekalainen. Cumulated Gain-based
evaluation of IR techniques, ACM Transactions on
Information System, 2002, 20, 422-446.

