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Click-through information is considered as a valuable source of users’ implicit relevance feedback for
commercial search engines. As existing studies have shown that search result position in search engine
result page(SERP) has a very strong influence on users’ examination behavior, most existing click models
are position-based, assuming that users examine results from top to bottom in a linear fashion. While these
click models have been successful, most do not take temporal information into account. As many existing
studies have shown, click dwell time and click sequence information are strongly correlated with users’
perceived relevance and search satisfaction. Incorporating temporal information may be important to
improve performance of user click models for Web searches. In this paper, we investigate the problem of
properly incorporating temporal information into click models. We firstly carry out a laboratory
eye-tracking study to analyze users’ examination behavior in different click sequences and find that user
common examination path among adjacent clicks is linear. Afterwards, we analyze user dwell time
distribution in different search logs and find that we cannot simply use a click dwell time threshold (e.g.
30s) to distinguish relevant/irrelevant results. Finally, we propose a novel click model named Time-Aware
Click Model (TACM) that captures the temporal information of user behavior. We compare TACM with a
number of existing click models using two real-world search engine logs. Experimental results show that
TACM outperforms other click models in terms of both predicting click behavior (perplexity) and
estimating result relevance (NDCG).

CCS Concepts: •Information systems → Web searching and information discovery; Retrieval
models and ranking;

Additional Key Words and Phrases: Click model, click sequence, click dwell time

1. INTRODUCTION
Modern search engines record user interactions and use them to improve search
quality. In particular, users’ click-through has been successfully used to improve
click-through rates (CTR), Web search ranking, query recommendation and
suggestions, and so on.

Although click-through logs can provide implicit feedback of users’ click preferences
[Agichtein et al. 2006b], it is difficult to derive accurate absolute relevance judgments
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owing to the existence of click noises and behavior biases. Joachims et al. [2005]
worked on extracting reliable implicit feedback from user behaviors and concluded
that click logs are informative yet biased. Previous studies showed that users’ clicking
behaviors are biased towards many aspects such as “position” [Craswell et al. 2008;
Joachims et al. 2005], “trust” [Yue et al. 2010], “presentation” [Wang et al. 2013], and
so on. To address these problems, researchers have proposed a number of click models
to describe users’ practical browsing behavior and to obtain an unbiased estimation of
result relevance [Chapelle and Zhang 2009; Dupret and Piwowarski 2008; Guo et al.
2009a].

Most click models follow the findings from Craswell et al. [2008]; Joachims et al.
[2005] that users’ attention decreases from top to bottom and assume that users’
potential examination/click paths are unique: the examination/click sequence is
consistent with result position. Therefore, these models do not actually take practical
temporal information into account. As modern search logs contain a time stamp for
each user interaction (e.g., querying, clicking, etc.), we can obtain two important
messages from this time stamp: the sequence of user clicks and the dwell time after
each user click.

For the click sequence information, eye-tracking experiments [Lorigo et al. 2006]
showed that only 34% of search users’ scan paths are linear, while over 50% of sessions
contain revisiting behaviors (i.e., given a search engine result page (SERP), the user
first clicks the result at position i and then clicks the one at position j, j ≤ i) or skipping
behaviors. We counted the non-sequential click proportion of multi-click query sessions
(when a user clicked two or more results on one SERP) from two commercial search
engine logs (Sogou and Yandex; see details in in Table I). We find that nearly one-third
(27.9% for Sogou and 30.4% for Yandex) of multi-click sessions contain non-sequential
click actions. While most existing click models are based on ranking positions rather
than action sequences, the click sequence information is usually ignored, and non-
sequential clicking behaviors are not considered, either. Dupret and Liao [2010]; Guo
et al. [2012] already showed that the last click in a search session may be more reliable
than other clicks. However, the last click performed by a user is not necessarily the one
at the lowest position, but the last one in the sequence of clicks. It is thus necessary to
take the click sequence information into account.

As for click dwell time information, existing studies [Fox et al. 2005; Kim et al.
2014] showed that dwell time on the landing page led by user clicks (click dwell time)
is a very strong indicator for user-perceived result relevance and user-perceived
search satisfaction. Fox et al. [2005] showed that users are more willing to spend
longer durations of time on those pages which are interesting and relevant. Kim et al.
[2014] also showed that the longer the dwell time, the more satisfied the user will be,
and the more relevant the search result tends to be. Therefore, click dwell time
information will be very helpful for us to better understand users’ click behavior and
make an accurate relevance estimation.

Some existing click models [Wang et al. 2010; Xu et al. 2012, 2010] have tried to
cope with click sequence information. These models relax the restrictions on users’
examination sequences (e.g., Wang et al. [2010] assumes that examination sequences
can be arbitrary) to increase models’ descriptive power. However, most of these
methods abandon the prior knowledge of user examination preference generated from
other user behavior studies, which has been found useful. In practice, these models
cannot achieve performance that is comparable to other popular click models
according to our experimental results.

To better understand users’ search interaction processes, we design a laboratory
study to analyze users’ practical examination patterns. Our observations confirm
clearly that many click behaviors are non-sequential. On the other hand, the
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examinations of documents between two clicks usually follow one direction, but with
possible skips. This observation shows that some of the assumptions used in the
previous position-based models (e.g., the sequential examination assumption) are
reasonable in local contexts (i.e., between two clicks). It is thus possible to build a new
model upon the existing position-based models by adding new hypotheses. By this
means, we not only inherit a framework which has already proved to be effective, but
also combine sequential information to better capture users’ preferences for different
search results.

To better use click dwell time information, we analyze the dwell time distribution
for different search logs (Sogou and Yandex). We verified the previous findings in
Agichtein et al. [2006a] that clicks with dwell time longer than a certain threshold
(e.g., 30 seconds) are good indicators of users’ perceived relevance. We also find that
the dwell time distribution in different search engines may be rather different, which
means that we must take the distribution factor into consideration to better model
user behavior. Combining our findings with the previous conclusions from Kim et al.
[2014], we design different mapping functions to model user satisfaction based on
click dwell time and further introduce the satisfaction factor into click models.
Although a few existing models [Chapelle and Zhang 2009] have attempted to take
user satisfaction into account, this is the first time click dwell time is used as a
satisfaction indicator in click models.

Our contributions in this paper are:
— An eye-tracking experiment is carried out to analyze users’ non-sequential

examination and click behavior on search engine result pages (SERPs).
— A novel click model named the Time-Aware Click Model (TACM) is proposed to

incorporate click sequence information and click dwell time information.
— We show experimentally that the proposed TACM model outperforms the existing

models on two real-world commercial search engine datasets (one of which is
publicly available).
This paper is organized as follows. Various click models are reviewed in Sec. 2. In

Sec. 3, we outline insights of studies on examination/click sequences and click dwell
time. In Sec. 4, we formally introduce TACM and compare it with PSCM. We report
experiments on TACM and compare it with existing click models in Sec. 5. Finally,
conclusions and future work are discussed in Sec. 6.

2. RELATED WORK
In this section, we introduce related work on click sequences and click dwell time
information. We first introduce some basic click models for Web search [Chuklin et al.
2015] to show the essential ideas and assumptions of click model and then we introduce
some existing click models which can partially handle temporal information.

2.1. Basic Click Models
Most click models follow the examination hypothesis [Craswell et al. 2008]: a document
being clicked (Ci = 1) should satisfy (→) two conditions: it is examined (Ei = 1) and it
is relevant (Ri = 1) (most click models assume P (Ri = 1) = ru, which is the probability
of the perceived relevance), and these two conditions are independent of each other.

Ci = 1→ Ei = 1, Ri = 1 (1)

Ei = 0→ Ci = 0 (2)

Ri = 0→ Ci = 0 (3)
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Following this assumption, the probability of a document being clicked is determined
as follows:

P (Ci = 1) = P (Ei = 1)P (Ri = 1) (4)

The click action is simply mapped to each search result’s ranking position. Based on
the assumption that a user examines from the top position to the bottom position, this
kind of click model naturally takes position bias into account.

Craswell et al. [2008] proposed the cascade model, which assumes that, while a
user examines results from top to bottom sequentially, he/she immediately decides
whether to click on a result. The cascade model is mostly suitable for single-click
sessions. A number of succeeding models were proposed to improve both its
applicability and performance.

P (E1) = 1 (5)

P (Ei+1 = 1|Ei = 1, Ci) = 1− Ci (6)

Here the examination of the (i + 1)th result indicates that the ith result has been
examined but not clicked. Although the cascade model performs well in predicting
click-through rates, this model is only suited for a single-click scenario.

Based on the cascade hypothesis, the Dependency Click Model (DCM) [Guo et al.
2009a] extends the cascade model in order to model user interactions within
multi-click sessions. DCM assumes that a user may have a certain probability of
examining the next document after clicking the current document, and this
probability is influenced by the ranking position of the result. The DCM model is
characterized as follows:

P (Ei+1 = 1|Ei = 1, Ci = 0) = 1 (7)

P (Ei+1 = 1|Ei = 1, Ci = 1) = λi (8)

where λi represents the preservation probability1 of the position i.
Subsequently, the User Browsing Model (UBM) [Dupret and Piwowarski 2008]

further refined the examination hypothesis by assuming that the event of a document
being examined depends on both the preceding click position and the distance
between the preceding click position and the current one.

P (Ei = 1|C1...i−1) = λri,di (9)

where ri represents the preceding click position and di is the distance between the
current rank and ri.

The Dynamic Bayesian Network model (DBN) [Chapelle and Zhang 2009] is the first
model to consider presentation bias due to a snippet (rather than ranking position).
This model distinguishes the actual relevance from the perceived relevance, where the
perceived relevance indicates the relevance represented by titles or snippets in SERPs
and the actual relevance is the relevance of the landing page.

P (Ri = 1) = ru (10)

P (Si = 1|Ci = 1) = su (11)

P (Ei+1|Ei = 1, Si = 0) = λ (12)

1The probability of the (i+ 1)th result being examined when the ith document is clicked
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where Si represents whether the user is satisfied with the ith document, su is the
probability of this event, ru is the probability of the perceived relevance, and λ
represents the probability of continuing the examination process.

Subsequently, the Click Chain Model (CCM) [Guo et al. 2009b] uses Bayesian
inference to obtain the posterior distribution of the relevance. In contrast to other
existing models, this model introduces skipping behavior. CCM is scalable for
large-scale click-through data, and the experimental results show that it is effective
for low-frequency (also known as long-tail) queries.

Although some of these models have achieved great success in interpreting clicks
and in predicting relevance, compared to the proposed TACM, they cannot explain
the situation where a user does not follow a top-down click sequence, and they ignore
revisiting or duplicated clicks.

2.2. Click Dwell Time
Click dwell time measures how long it takes for someone to return to a SERP after
clicking on a result. Usually it is recorded in search engine’s behavior log data, which
makes it practical for them to make use of this kind of information.

Kim et al. [2014] conducted an experiment to estimate click dwell time
distributions for SAT (satisfied) or DSAT (dissatisfied) clicks for different click
segments. The experimental results showed that the longer the dwell time, the more
satisfied the user will be, and the more relevant the search result. In Kim et al.
[2014], dwell time was measured as time between the click and the next observed
click or query, which is the same as our method in this work. Fox et al. [2005] also
made the conclusion that users are more willing to spend longer times on those pages
which are interesting and related to their focus. Smucker and Clarke [2012] analyzed
the correlation between click dwell time and user information gain, and found that
the correlation is positive but not linear.

Borisov et al. [2016a] was among the first to propose that time elapsed between a
pair of user actions depends on the context of behaviors. They further construct a
context-aware model to predict time between user actions in contexts. Their work
shows that the dwell time of user clicks is affected by many different factors and
incorporating such information may help the behavior model to better correlate with
users’ practical actions.

The TACM is based on these existing findings and try to incorporate dwell time into
the click modeling process. By doing so, we hope to make better use of the feedback
information provided by dwell time to improve model performance.

2.3. Temporal Click Models
Several studies [Wang et al. 2010; Xu et al. 2012, 2010] have tried to take temporal
click information into consideration.

Xu et al. [2010] first proposed a Temporal Click Model (TCM) to model user click
behavior for sponsored searches. They enumerate all possible permutation of click
sequences for search results. This model can only handle two results/ads in an SERP.
This makes it impossible to cope with the whole ranked result list like in other click
models.

Wang et al. [2010] introduced a partially observable Markov Model (POM) to model
arbitrary click orders. The POM model treats user examination events as a partially
observable stochastic process. Although POM can model non-sequential behaviors, it
only considers the examination transition at each position (i.e., different users and
different queries share the same examination sequence parameters). Therefore, this
model cannot predict the click probability or relevance for a specific query, and thus
can hardly be used in a practical search environment. Due to this limitation, it cannot
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be compared with other state-of-the-art click models such as UBM and DBN, which
need to predict click probability and relevance for a specific query-URL pair. It also
makes the first-order examination assumption that the current examination behavior
only depends on its previous examination step, which might not align with real user
behavior.

Xu et al. [2012] proposed a Temporal Hidden Click Model (THCM) to cope with
non-sequential click actions. They focused on revisiting behavior and assumed that,
after clicking a search result, the user has a probability of going back to examine
previous results (bottom-up). However, their model was also based on a one-order
Markov examination assumption, and supposes that users examine results one by
one in the examination process, which does not necessarily correspond to practical
user behavior (see Sec. 3).

While the above three click models have the potential to take click sequence
information into consideration, compared to our proposed Partially Sequential Click
Model (PSCM) [Wang et al. 2015], their adopted methodologies are less suitable for
dealing with practical search behavior in modern commercial search engines. The
PSCM is inspired by an eye-tracking study on real users’ non-sequential SERP
behavior, and therefore corresponds better to real-world user behavior.

Zhang et al. [2014] proposed a click model based on Recurrent Neural Networks
(RNN) for sponsored search. They directly models the dependency on users sequential
behaviors into the click prediction process through the recurrent structure in RNN.
Borisov et al. [2016b] also proposed an RNN based click model to model user’s
sequential click behaviors. These models only take click sequence information into
account and ignore the influence of different click dwell time among click actions.

As related studies showed that click dwell time has a positive correlation with user
satisfaction, we tried to design some functions that map click dwell time to user
satisfaction and incorporated this into our click models. We designed two different
mapping functions: one is a linear mapping function and the other is an exponential
function based on Smucker and Clarke [2012]. In the experiment section, we
implement these different mapping functions and compare them. As the PSCM model
showed better performance compared to other click sequence based models, we choose
the PSCM model as the basic framework for our new model and try to add click dwell
time information into this framework.

3. USER BEHAVIOR ANALYSIS
3.1. Click Sequence Analysis
To investigate users’ examination sequences during the search process, we carried out
a laboratory study with 37 undergraduate students recruited from a university in
China (18 males and 19 females with various self-reported Web search expertise). The
number of subjects was similar to other Web search eye-tracking studies such as
Cutrell and Guan [2007]; Granka et al. [2004].

Subjects were provided with a list of 25 search tasks. Each task was accompanied
by a fixed query (with an explanation of the information needed to avoid ambiguity)
and a Chinese commercial search engine’s first result page. We crawled and stored
the corresponding SERPs to ensure that all subjects saw the same page for each
query. With this setup, each search task (query session) corresponded to one specific
SERP. The queries for the search tasks were sampled from the NTCIR IMine task2.
As different types of information needs [Broder 2002] may also affect browsing
behavior [Granka et al. 2004], the selected search tasks covered different types of

2http://www.thuir.cn/imine/
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search intents. In the query set, 5 of the queries were “Navigational” (e.g., “Meizu’s
official Website”), 10 were “Informational” (e.g., “What is the sound card?”) and 10
were “Transactional” (e.g., “Web browser download”).

With an eye-tracking device (Tobii X2-30), we recorded each subject’s eye movement
information for each result in each search task. For quality control purposes, each
subject was asked to perform eye-tracking calibration before the experiment. The
precision threshold of calibration was less than 1◦ for both vertical and horizontal
directions. Subjects may have needed to perform the calibration several times before
they met the precision requirement. Behavior data from several query sessions were
removed owing to subjects’ operation errors or software crashes. After removing data
from these sessions, we finally collected 890 (out of 925) valid query sessions. When
looking at the click-through behavior in these sessions, we found that there were
many query sessions (22.8%, 203 of 890) that contained non-sequential (revisiting or
duplicate) click actions. This number confirms clearly the necessity of incorporating
non-sequential behaviors into click models.

With the eye-tracking device, we collected two types of eye movement information:
saccades and fixations. A saccade refers to a fast eye movement from point to point in
jerks, while fixation means that the eyes stop moving for a short period of time
[Rayner 2009]. As for the threshold of fixation, we adopted the one used in most
previous works (200-500 ms, as in Navalpakkam et al. [2013]; Salvucci and Goldberg
[2000]) and set it to 250 ms. Because new information is mainly acquired during
fixation, most existing studies [Buscher et al. 2012; Huang et al. 2011; Navalpakkam
et al. 2013] assumed that eye fixation is equivalent to the user’s examination
sequence. Although some recent studies [Liu et al. 2014] showed that eye fixation
does not necessary mean examination in many cases, it would be difficult to collect
true examination information because this requires users’ explicit feedback.
Therefore, we still used the recorded fixation sequences to approximate subjects’
examination sequences for simplicity. In this way, both click sequences and
examination sequences could be reconstructed.

Fig. 1. Distribution of the number of examination direction changes for two types of adjacent clicks.

With the data collected in the experiment, we want to answer the following two
questions about users’ examination behavior on the SERPs.

RQ1: How often do users change the direction of examination between clicks?
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RQ2: How far do users’ eye gazes jump after examining the current clicked result?
By investigating these two questions, we aim to understand how users behave and to

propose corresponding user behavior assumptions in order to model users’ examination
behavior in a more reasonable way. To simplify the notation, suppose that the first
click is at position i and the next click is at position j. If i < j, it is a sequential action
according to the depth-first assumption (this direction is referred to as “↓”). If i ≥ j, it
is a non-sequential click action according to the definition of revisiting behavior (this
direction is referred to as “↑”).

To answer the two research questions above, we firstly divide all examination
sequences into adjacent examination behavior pairs. For a given examination
sequence E = 〈E1, E2, ..., Et, ..., ET 〉, it will be divided into T − 1 pairs:
(E1, E2), (E2, E3), ..., (ET−1, ET ). For each pair, similar to the definition of direction in
adjacent clicks, we can define its direction as ↑ or ↓ according to whether the sequence
of the examination pair follows a depth-first assumption or not.

To investigate RQ1, we consider the examination sequence between ↑ and ↓ adjacent
clicks separately. Intuitively, one may believe that the examination sequence between
↓ adjacent clicks should follow the depth-first assumption. In other words, that the
examination sequence would be consistent with the click sequence.

However, it is also possible that some parts of the examination sequence follow a
non-sequential order. Similarly, the examination sequence between ↑ adjacent clicks
may also contain ↓ adjacent examination pairs. To find out how often examination
direction changes occur between adjacent clicks, we counted the number of
examination direction changes; their distributions are shown in Figure 1.

From this figure, we can see that regardless of whether the click direction is ↑ or ↓, in
most cases (72.7% for ↓ and 78.9% for ↑), the whole examination sequences follow the
same direction as the click direction without any direction changes. The percentage of
sequences with direction changes between ↓ clicks is slightly larger than that between
↑ clicks. This phenomenon corresponds well to the behavior pattern in which users
re-examine some higher-ranked results before moving to the lower-ranked ones. With
this observation, we can formulate the following behavior assumption:

Fig. 2. Average examination transition distance according to different examination transition start
positions for two types of adjacent clicks.
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Locally Unidirectional Examination Assumption: Between adjacent clicks,
users tend to examine search results in a single direction without changes, and the
direction is usually consistent with that of clicks whether it is ↑ or ↓.

To answer RQ2, we look at the average examination transition distance within
adjacent examination pairs. For a given adjacent examination pair (Et−1, Et), suppose
that the first examination Et−1 is at position k while the next examination Et is at
position l. The transition distance can be calculated as |k − l|. Figure 2 shows the
distribution of transition distance in different resulting positions.

We can see that all transition distances are around 1.25 when a user follows a top-
down (↓) click sequence. Meanwhile, when a user follows a bottom-up (↑) click sequence,
his/her eyes may skip several results to find a specific result.

In particular, we observe larger transition distances for bottom-ranked positions,
which tend to bring focus back to the middle positions (positions 5-6) in the list. As all
the transition distances are statistically significantly larger than 1 (p−value < 0.01 for
each position and each click direction based on the t-test), we can make the following
behavior assumption:

Non First-Order Examination Assumption: although the examination behavior
between adjacent clicks can be regarded as locally unidirectional, users may skip a few
results and examine a result at some distance from the current one following a certain
direction.

With the answers to these two research questions, we are able to draw a relatively
clear picture of user’s examination behavior between adjacent clicks. After a certain
user clicks a result i, he/she may start examining results either in a ↑ or a ↓ direction.
The user seldom changes the examination direction until he/she clicks another result
located at position j (the locally unidirectional examination assumption), but he/she
may not examine all results on the examination path (the non-first-order examination
assumption).

Compared to existing sequence-based click models such as POM, which assume
that the examination sequence within two clicks can be arbitrary, actual user
behavior shows much simpler patterns. It is thus possible for us to take advantage of
the patterns so as to simplify model construction. Compared to THCM, which
assumes that users examine results one by one, the observed user examination
behavior demonstrates that user examination may include skips quite frequently. It is
necessary for a click model to account for such behaviors.

3.2. Click Dwell Time Analysis
Among many implicit measures, click dwell time (the time that the user spends on a
clicked result) is one of the most important features because it is clearly correlated with
result-level satisfaction or document relevance [Buscher et al. 2009; Fox et al. 2005;
Smucker and Clarke 2012]. Longer dwell time on a clicked page has traditionally been
used to identify satisfied (SAT) clicks. While click-through statistics can sometimes
be misleading owing to order and caption biases, click dwell time is a more robust
measure.

Click dwell time has been successfully used in a number of retrieval applications
(e.g., implicit relevance feedback [White and Kelly 2006] and re-ranking [Agichtein
et al. 2006a]). In those applications, SAT clicks are simply identified by some
predefined time threshold (i.e., a click is SAT if its dwell time equals or exceeds that
threshold). A dwell time equal to or exceeding 30 seconds, as proposed in Fox et al.
[2005], has typically been used to identify clicks with which searchers are satisfied.

As click dwell time is very important feedback, we want to add this information
into the click model’s framework. hence, we first choose the SAT click indicator (30 s)
as our first information gain mapping reference. However, the dwell time depends on
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page content and has been shown to vary based on other factors such as the search
task and the user. A more robust interpretation of click dwell time is therefore needed.

We use the click dwell time distribution in the Sogou and Yandex dataset.
According to Figure 3, we can see that the dwell time distribution is very long-tailed.
Although in over half (50.4%) of situations, users spend less than 30 s on each click,
many clicks still cost over 100 s. Moreover, we can also see that user behavior is very
different in the Sogou and Yandex search logs. The click dwell time in the Yandex
dataset tends to be much longer than in the Sogou dataset. This may be caused by the
language differences, culture differences or the differences in network environment.
While it still shows that a single dwell time threshold (e.g. 30s) may not correctly
indicate user satisfaction and we should take dwell time information into account in
our model framework.

Fig. 3. Dwell time distribution in different search logs.

4. TIME-AWARE CLICK MODEL
According to previous section, we may assume that click dwell time can provide
valuable feedback information which we can not obtain from click actions and click
sequence information. An intuitive idea is that if a user prefers a certain result,
he/she may stay at the corresponding landing page for a longer time than a result
he/she dislikes. Therefore, we should use click dwell time information to help us infer
these preferences.

To incorporate the dwell time information into the modeling process, we inherit the
assumption from DBN model [Chapelle and Zhang 2009], which assumes that when a
user achieves a satisfied state, he/she will not continue the search process. We use a
function which maps click dwell time to the satisfaction state. As our goal is to test the
effectiveness of introducing click dwell time information into click models, we choose
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to build a new click model based on some existing click models. As the PSCM model
[Wang et al. 2015] is a newly proposed click model which shows good performance and
it already takes click sequence information into account compared with other position-
based click models, we choose the PSCM model as our basic model to further add click
dwell time information to build a new click model named Time-Aware Click Model
(TACM).

In the following subsections, we at first propose the PSCM model and the TACM
model. After that, we compare these two models and introduce the inference process of
the TACM model.

4.1. Partially Sequential Click Model
We firstly make some definitions and notations. Suppose that there are N sessions,
each of which records certain user interactions with the top M results (M is usually
set to 10 in most existing click model research). The results list can be represented as
an impression sequence: D = 〈d1, d2, ..., di, ..., dM 〉, where i corresponds to the ranking
position (from 1 to M ) and di is ranked higher than dj if i < j. The relevance of each
result is represented by: R = 〈R1, R2, ..., Ri, ..., RM 〉. With the timestamp information
recorded in the logs, we organize the click sequence as C = 〈C1, C2, ..., Ct, ..., CT 〉, where
t is the relative temporal order of a click and Ct records the result position of the t-th
click (1 ≤ Ct ≤M ).

The First-Order Click Hypothesis is usually accepted in most click models such as
DBN and UBM. We do the same in this work. This supposes that the click event at
time t+ 1 is only determined by the click event at time t. According to this hypothesis,
a user’s click action C = 〈C1, C2, ..., Ct, ..., CT 〉 can be independently separated to T + 1
adjacent click pairs: 〈C0, C1〉, ..., 〈Ct−1, Ct〉, ..., 〈CT , CT+1〉 (C0 represents the beginning
of the search process and CT+1 represents the end of the search process). This makes
it possible for us to divide a click sequence into sub-sequences (adjacent click pairs).

According to the Locally Unidirectional Examination Assumption, given an
observation of adjacent clicks at time t: O = {〈Ct−1 = m,Ct = n〉}, users tend to
examine the results on the path from m to n without any direction changes. Then the
examination and click sequence between Ct−1 and Ct can be noted as
〈Ēm, ..., Ēj , ..., Ēn〉 and 〈C̄m, ..., C̄j , ..., C̄n〉, respectively. Note that, in contrast to Ct,
which is used to record the position of click event, Ēj and C̄j (m ≤ j ≤ n or n ≤ j ≤ m)
are all binary variables representing whether examination or click behavior happens
(=1) or not (=0) at the corresponding result position. In addition, we can also deduce
that in the click sequence, only C̄m and C̄n have values of 1 and the other positions on
the path have values of 0.

The proposed Partially Sequential Click Model (PSCM) adopts these two
assumptions. It is then described as follows:

P (Ct|Ct−1, ..., C1) = P (Ct|Ct−1) (13)

P (Ct = n|Ct−1 = m) =

P (C̄m = 1, ..., C̄i = 0, ..., C̄n = 1)
(14)

P (Ēi = 1|Ct−1 = m,Ct = n) ={
γimn,m ≤ i ≤ n or n ≤ i ≤ m
0, other

(15)

C̄i = 1⇔ Ēi = 1, Ri = 1 (16)

P (Ri = 1) = αuq (17)
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Equation (13) encodes the first-order click hypothesis while Equation (14) encodes
the locally unidirectional examination assumption by restricting the examination
process to one-way from m to n. We define the examination probability of Ēi as
Equation (15) because, according to Figure 2, the examination behavior between
adjacent clicks may not follow cascade assumptions (the non-first-order examination
assumption). The probability of examination depends on the positions of the clicks.
This is similar to UBM, which also allows skips, but only within sequential behavior.
PSCM also follows the examination hypothesis described in Equation (16) as in most
existing click models. αuq corresponds to the relevance of the document URL u at
position i for the specific query q.

4.2. Time-Aware Click Model
To add click dwell time information, we introduce a new hidden state (satisfaction
state) into this model: S = 〈S0, S1, S2, ..., St, ..., ST 〉, where each St = 1 represents that,
after a user’s tth click, the user has already obtained enough information and prepares
to finish his/her search process. This hidden state is inspired by the Dynamic Bayesian
Network model (DBN) [Chapelle and Zhang 2009], which assumes that a user may
achieve a satisfaction state and stop browsing after reading some results. As Fox et al.
[2005]; Smucker and Clarke [2012] showed that users are more willing to spend longer
times on those pages which are related and that the correlation between click dwell
time and user information gain is positive, we want to use click dwell time information
to represent the user’s information gain.

The proposed Time-Aware Click Model (TACM) is then described as follows:

P (Ct|Ct−1, ..., C1, St− 1, ..., S1) = P (Ct|Ct−1, St−1) (18)

St−1 = 1→ Ct = 0 (19)

P (Ct = n|Ct−1 = m) =

P (C̄m = 1, ..., C̄i = 0, ..., C̄n = 1)
(20)

P (Ēi = 1|Ct−1 = m,Ct = n) ={
γimn,m ≤ i ≤ n or n ≤ i ≤ m
0, other

(21)

C̄i = 1⇔ Ēi = 1, Ri = 1 (22)

P (Ri = 1) = αuq (23)

P (St = 1) = P (Rt = 1)× F (DwellT imet) (24)

We can see that Equation (18) and Equation (20) still follow the first-order click
hypothesis and locally unidirectional examination assumption proposed in the PSCM
model. In Equation (18), we also add the influence of the user’s satisfaction factor,
and Equation (19) shows that the user may stop the browsing process if he/she feels
satisfied. TACM also follows the examination hypothesis described in Equation (22) as
in most existing click models. αuq corresponds to the relevance of the document URL u
at position i for the specific query q.

Equation (24) describes the usage of click dwell time information. After each click,
the user will obtain an information gain based on the dwell time and the result
relevance. We use four different mapping functions:
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Linear Mapping Function
According to Fox et al. [2005], A dwell time equal to or exceeding 30 s has typically

been used to identify clicks with which searchers are satisfied. Therefore, we assume
that if a user spends over 30 s on a result, he/she will completely obtain the information
gain from this result, and the obtaining process is linear:

F (DwellT imet) =
min(DwellT ime+ δ, 30− δ)

30
(25)

Here, δ > 0 is a small positive number to make sure that the probability will never
be 0, which may cause errors in logarithmic terms.

Quadratic Mapping Function
To verify wether increasing the order of the polynomial interpolation will enhance

the fitting degree of mapping function, we also test Quadratic Mapping Function by
simply squaring the Linear Mapping Function.

Exponential Mapping Function
Smucker and Clarke [2012] proposed an exponential function to fit the time-based

gain density function:

F (DwellT imet) = e−DwellT ime×
ln2
h (26)

where h is the time at which half of the users have stopped scanning the result list.
According to our analysis of two real-world large-scale data sets (Sogou from China
and Yandex from Russia), results show that the value h for Sogou is 68.96 s, and the
value h for Yandex is 2110.56 s.

Rayleigh Mapping Function
Liu et al. [2010] utilized Weibull distribution to analyze dwell time on Web browsing

behaviors. The Rayleigh distribution is a special case of the Weibull distribution when
parameter k in Weibull distribution equals 2. The time-based gain density function of
Rayleigh distribution has the following format:

F (DwellT imet) =
2×DwellT ime

h2
× e−( DwellTime

h )2 (27)

where h is also the time at which half of the users have stopped scanning the result
list.

4.3. Model Inference for TACM
According to the description of TACM model and PSCM model in previous setions, we
can see that the major differences of these two models are: in TACM model, we try to
emphasis the influence of different click dwell time on clicked results; therefore, we
introduce a new group of hidden state S to represent user’s satisfaction degree
(represents the probability of stopping search process). According to the existing
studies Fox et al. [2005]; Liu et al. [2010]; Smucker and Clarke [2012], we assume
that the stopping probability is related to the result relevance (αuq) and the dwell
time user costs on it (F (DwellT imet)).

According to the definitions of different dwell time mapping functions, we do not
introduce any new hidden parameters from these mapping functions. Therefore, the
hidden parameters of TACM model are the same as PSCM model ({αuq} and {γimn}).
As the different dwell time will change the relevance estimation for {αuq} according to
Equation (24), and the examination parameters {γimn} are global parameters shared
among different results, all these hidden parameters in TACM model will be different
from PSCM model.As we do not introduce any new parameters for TACM model, we
can test the effectiveness of using click dwell time in click model by comparing TACM
model with PSCM model.
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We use the Expectation-Maximization (EM) algorithm [Gupta and Chen 2011] to
find the maximum likelihood estimate of the variables {αuq} and {γimn}. We first
introduce some notations: suppose that we have N query sessions and M results for
each query, j is the jth query session in N , T j is the click sequence length in this
session, dji = u means the ith document’s url is u in jth query session, qj = q means
the query is q in jth query session, t̄ corresponds to the tth adjacent click pair
{t, Ct−1 = m,Ct = n}, Ct = n means the tth click position is n, I(·) represents the
indicator function, Imn is the abbreviation of I(m ≤ i ≤ n or n ≤ i ≤ m), I= is the
abbreviation of I(dji = u, qj = q, i = n), and I 6= is the abbreviation of
I(dji = u, qj = q, i 6= n)). The observation of our model is the click sequence (Y = {C}),
the hidden variables are query-result relevance and user examination information
(Z = {R,E,S}), and the parameters are θ = {αuq, γimn}. Therefore, given one specific
query session, the marginal likelihood is:

P (Y,Z|θ) = P (C,E,R,S|θ) =

T∏
t=1

P (Ct,E,R|Ct−1, θ)P (St−1 = 0|θ)

=

T∏
t=1

P (Ct,E,R|Ct−1, θ)×
T∏
t=1

(1− P (Rt = 1)F (DwellT imet))

(28)

According to Equation (14) and Equation (16) (omit θ for conciseness),
P (Ct = n,E,R|Ct−1 = m) =

{
n−1∏

i=m+1

P (C̄i = 0|Ēi, Ri)P (Ri)P (Ēi|Ct−1 = m,Ct = n)}

· {P (C̄n = 1|Rn, Ēn)P (Rn)P (Ēn|Ct−1 = m,Ct = n)}

(29)

The conditional expected log-likelihood (Q-function) can be written as (suppose that
the parameter at iteration v is θ(v)):

Q = EE,R,S|C,θ(v) [logP (C,E,R,S|θ)] (30)

In iteration v, the formulation of parameter αuq corresponding to a specific query q
and result u in the Q-function is:

Qαuq =

N∑
j=1

T j−1∑
t̄

{I= · log(1− α(v)
uq F (DwellT ime)) +

N∑
j=1

T j∑
t̄

{Imn · [I= · 1 · log(αuq)

+ I6= ·
1− α(v)

uq

1− α(v)
uq γ

(v)
imn

· log(1− αuq) + I6= ·
α

(v)
uq (1− γ(v)

imn)

1− α(v)
uq γ

(v)
imn

· log(αuq)]}

(31)

The formulation of parameter γimn corresponding to a specific position i (the
adjacent clicks are m and n) in the Q-function is:

Qγimn
=

N∑
j=1

T j∑
t̄

{Imn · [I6= ·
1− γ(v)

imn

1− α(v)
uq γ

(v)
imn

· log(1− γimn)

+ I6= ·
γ

(v)
imn(1− α(v)

uq )

1− α(v)
uq γ

(v)
imn

· log(γimn) + I= · 1 · log(γimn)]}

(32)

For γimn on Equation (32), we can take the derivative and generate the
corresponding updating formulation in iteration round (v):
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By separately taking the derivatives of αuq in Equation (31) and γimn in Equation
(32), we can generate the corresponding updating formulation for α(v+1)

uq and γ(v+1)
imn in

iteration round (v):

G
(v)
1 =

N∑
j=1

T j∑
t̄

{Imn · I6= ·
1− γ(v)

imn

1− α(v)
uq γ

(v)
imn

}

G
(v)
2 =

N∑
j=1

T j∑
t̄

{Imn · I6= ·
γ

(v)
imn(1− α(v)

uq )

1− α(v)
uq γ

(v)
imn

}

G
(v)
3 =

N∑
j=1

T j∑
t̄

{Imn · I=}

γ
(v+1)
imn =

G
(v)
2 +G

(v)
3

G
(v)
1 +G

(v)
2 +G

(v)
3

(33)

meanwhile, for αuq in Equation (31), as for Equation (31), it can be written as:

Qαuq
=
∑
i

ai log(αuq) +
∑
i

bi log(1− αuq) +
∑
i

ci log(1− F (DwellT ime)αuq)

=
∑
i

wi × f(αuq)
(34)

We can use the stochastic gradient descent method to find the updating value. The
initial value is the close-formed updating formulation of ai and bi:

A
(v)
1 =

N∑
j=1

T j∑
t̄

{Imn · I 6= ·
1− α(v)

imn

1− α(v)
uq γ

(v)
imn

}

A
(v)
2 =

N∑
j=1

T j∑
t̄

{Imn · I 6= ·
α

(v)
imn(1− γ(v)

uq )

1− α(v)
uq γ

(v)
imn

}

A
(v)
3 =

N∑
j=1

T j∑
t̄

{Imn · I=}

αinitialuq =
A

(v)
2 +A

(v)
3

A
(v)
1 +A

(v)
2 +A

(v)
3

αv+1
uq = αinitialuq − η

∑
i

∇(wi × f(αuq))

(35)

Compared to PSCM model, the update formulas obtained for TACM are exactly the
same as for PSCM model, except for the αuq parameter. That’s because we only matke
the assumption that different click dwell time only show influence on result relevance
estimation. Therefore, the examination sequence is same as PSCM model. While
according to Equation (33), the γimn will be different from PSCM model as the αuq
parameters are different in these two click models.
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5. EXPERIMENTS
To test the effectiveness of the proposed TACM model, we compared its performance
with a number of existing click models for click prediction and relevance estimation.
Besides our basic model PSCM [Wang et al. 2015], we also chose some popular
position-based click models (UBM [Dupret and Piwowarski 2008] and DBN [Chapelle
and Zhang 2009]), and sequence-based click models (POM [Wang et al. 2010], THCM
[Xu et al. 2012] and TCM [Xu et al. 2010]) as our baselines.

We performed two types of experiments to validate our model. We evaluated the click
model in terms of predicting click probabilities (click perplexity) from search logs and
used the predicted relevance as a signal for document ranking, and evaluated each
click model’s ranking performance with traditional IR metrics (in this paper, we use
the NDCG metric [Järvelin and Kekäläinen 2002]).

5.1. Experimental Setup
As we described above, we applied the same method here to address the limitations
of TCM and POM in order to adapt them for performance comparison. As for other
baseline models, we refer to the implementations from Chuklin et al. [2013]. Our own
implementation of PSCM and TACM can be found at http://www.thuir.cn/group/˜yqliu
as well as a sample of the experimental data set.

5.1.1. Baseline Model Adaptation.
(TCM) As we mentioned in related work section, this model can only handle result lists
containing exactly two results. As this model enumerates all possible click sequences
for a specific ranking list (5 possible situations for two results [Xu et al. 2010]), it
faces an exponential explosion problem when the number of results becomes large.
Therefore, we cannot expand this model to M results in one SERP (M equals 10 in
our data set). In order to compare this model with other existing click models which
can handle an arbitrary number of results in an SERP, we made a trivial expansion of
the TCM model: we separated these results into M/2 pairs (〈1, 2〉, 〈3, 4〉, ..., 〈M − 1,M〉)
and implemented the TCM model for each pair separately. Then, from each pair we
can deduce the two results’ relevance and click probabilities. We therefore combine
M/2 pairs together to generate click prediction and relevance prediction for the whole
results list.

(POM) Although POM can model non-sequential behaviors in user interactions,
this model is not designed to predict the click probability or result relevance for a
specific query, as we discussed in related work section. It is unfair to compare POM
with other models. To make POM more suitable for click and relevance prediction
tasks, we modified the original POM model by setting a relevance score for each
specific document-query pair.

According to search logs, clicks can be re-organized as a temporal sequence of
behaviors by recorded timestamps: E = 〈E1, E2, ..., Et, ..., ET 〉, where t represents the
events’ relative order, Et represents the corresponding ranking of the result being
examined at time t, and C = 〈C1, C2, ..., Ct, ..., CT 〉, where Ct represents whether the
corresponding result is clicked or not. From search logs, we can only observe which
results were clicked by users. Based on the assumption that a user must examine a
result before clicking on it (the examination hypothesis [Craswell et al. 2008]), we can
infer that the clicked results must have been examined. Therefore, a user may
examine some results in his/her browsing process but not click them given a click
sequence observation O = {(E1 = e1, C1 = 1), ..., (ET = eT , CT = 1)}. Therefore, an
arbitrary O′ = {(E′1, C ′1), ..., (E′k, C

′
k), ...(E′K , C

′
K)} can be generated based on the

original observation O, where O ⊆ O′. The POM model assumes that the probability
of original observation is the summation of the probabilities of all compatible
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examination sequences. Furthermore the POM model makes the first-order
assumption that the currently examined result only depends on previous
examinations. Therefore, the POM model can be represented as follows:

P (O) =
∑
O′

P (O′) =
∑
O′

K∏
i=1

P (Ci|Ei)P (Ei|Ei−1) (36)

P (Ci = 1|Ei = m) = cm (37)

P (Ei = n|Ei−1 = m) = emn (38)

where E0 represents the submitted query received at the beginning of a search
session, cm is the click probability of rank m, and emn is the examination transition
probability. According to the formulations above, the POM model can model arbitrary
examination orders. As a matter of fact, it can describe non-sequential click behavior
during a search process.

However, in the original POM model, given the examination of a result, the click
probability is only dependent on the result position (Equation (37)). Therefore, we
simply adopt the examination hypothesis that, given the examination of a result, the
click probability is dependent on the result’s relevance. Therefore, the Equation (37)
is revised as:

P (Ci = 1|Ei = m) = αuq (39)

where αuq is the relevance of a query-document pair. Therefore, the click probability no
longer depends on the rank position but depends on the search query. Once we obtain
αuq, we can compare POM with other click models in terms of click perplexity and
NDCG. The parameter estimation formulation is made similar to the original model
[Wang et al. 2010] by using the Expectation-Maximization (EM) algorithm.

The estimation formula for the iteration process (v + 1) is:

e(v+1)
mn =

∑
q

∑
qs

∑
O′ P (O′|Λ(v))

∑
i I(Ei+1 = n,Ei = m)∑

q

∑
qs

∑
O′ P (O′|Λ(v))

∑
i I(Ei = m)

(40)

α(v+1)
qu =

∑
qs

∑
O′ P (O′|Λ(v))

∑
i I(Ei = m,Ci = 1, di = u)∑

qs

∑
O′ P (O′|Λ(v))

∑
i I(Ei = m, di = u)

(41)

where Λ(v) represents the parameter for iteration process (v), qs is the list of
corresponding sessions of query q, and I(·) is the indicator function.

5.1.2. Data Sets.
To show the effectiveness of the proposed click models, we utilize two real-world large-
scale data sets collected by Sogou from China and Yandex3 from Russia. The detailed
statistics for the two datasets can be found in Table I. In order to better examine the
value of dwell time information, we filtered the data sessions without clicks or those
that contained only a single click. Please be noted that the data sets used here are
not the same with those in [Wang et al. 2015] because the dataset in the PSCM paper
[Wang et al. 2015] does not contain click dwell time information. According to the
following experimental results, the major findings are the same with those obtained
based on those previous data sets.

3The Yandex dataset is publicly available at https://www.kaggle.com/c/yandex-personalized-Web-search-
challenge/data.
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Table I. Two large-scale commercial search logs (different
languages) used to evaluate the proposed click models (“#”
represents “number of”).

Data Data-C Data-Y
Description Sogou’s logs Yandex’s logs
#Distinct Queries 149,947 2,643,339
#Sessions 3,431,378 5,999,999

Experiments Click Perplexity
NDCG Click Perplexity

Table II. Overall click perplexity of each model on Data-C and Data-
Y (all improvements are statistically significant according to the t-
test with p− value < 10−5).

Model Data-C TACM Impr. Data-Y TACM Impr.
TACM 1.346 - 1.382 -
PSCM 1.477 +27.5% 1.428 +10.7%
UBM 1.562 +38.4% 1.611 +37.8%
DBN 1.593 +41.7% 1.670 +43.0%
POM 2.174 +70.5% 1.876 +56.4%
THCM 2.040 +66.7% 2.121 +65.9%
TCM 3.156 +84.0% 3.833 +86.5%

5.2. Evaluation of Click Prediction
As in the experiments for the TACM, we used two search logs (see Table I) to compute
the click perplexity of each model. For each dataset, we split all query sessions into
training and testing sets in a ratio of 70% : 30% as many previous studies did [Chen
et al. 2012; Wang et al. 2013].

5.2.1. TACM with Different Mapping Functions.
We firstly want to investigate which dwell time mapping function is more suitable for
the TACM model. Therefore, we implemented the linear mapping function, quadratic
mapping function, rayleigh mapping function and exponential mapping function
described in the previous section. To test whether dwell time information was
actually useful or not, we also implement a random mapping function which
randomly generated an information gain value no matter what the dwell time is.

The results are shown in Figure 4. We can see that the linear mapping function,
quadratic mapping function, rayleigh mapping function and exponential mapping
function are better than the random mapping function. Therefore, adding dwell time
information as a positive correlation with user satisfaction can actually improve the
model’s performance. We can also find that the exponential mapping function
performs best among all mapping functions. According to our statistics in the user
behavior analysis section, the click dwell time in different situations varies
significantly. Therefore, using a fixed threshold (e.g. 30 seconds) in the mapping
function (as in linear and quadratic functions) may not be a good idea. It accords with
the conclusions in [Kim et al. 2014] that in different cases, users need different
amount of time to be satisfied with result clicks. Therefore, we choose the exponential
mapping function in the following experiments.

5.2.2. Overall Comparison.
After choosing the proper dwell time mapping function, we compared performances of
the TACM model with other existing models in the Sogou and Yandex datasets.

Table II illustrates the overall perplexity of each model. We can see that the TACM
achieves the best performance among all click models. According to Table II, existing
sequence-based models (e.g. POM, THCM and TCM) cannot achieve as good
performance as those of the position-based models (UBM and DBN). This suggests
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Fig. 4. Click perplexity of different dwell time mapping functions on Data-C and Data-Y.

that the assumptions on examination and click sequences are either too strict (e.g.,
they restrict one-by-one examination in THCM) or too flexible (e.g., they allowed any
position in POM). As we observed, user behaviors basically followed the same
direction, but with occasional changes of direction and jumps. Our model is built on
these observations. As we can see in Table II, our model can better predict clicks than
all the other models. This is a strong indication that the sequence of user behaviors is
better coped with in our model. We can also see that, by adding dwell time
information, the TACM model can better predict click action than the PSCM model.

5.2.3. Comparison for Different Query Frequencies.
Besides the overall comparison, we also compared different models for different query
frequencies. We separated queries in our dataset into three groups according to the
query appearance count: a low-frequency group, middle-frequency group, and
high-frequency group. Table III shows the performance of different models. We can
see that popular click models such as the UBM perform better when query frequency
increases, while the PSCM model performs better for low-frequency queries. Although
the PSCM model’s performance decreases for high-frequency queries, it is still better
than other popular models. In contrast to these models, the TACM model performs
best for middle-frequency queries. The standard deviation of the TACM model at
different query frequencies was only 0.03, while for the PSCM model it was 0.08 and
for the UBM model it was 0.20. Therefore, the TACM model’s performance is much
more stable than other click models. The reason can be explained that for
low-frequency queries, as the data amount is very small, the amount of click dwell
time data points may not be sufficient to reveal the actual user preference on
different results. As the query frequency becomes higher and higher, the amount
becomes statistically significant for user preference estimation. Therefore, the TACM
model performs well for middle-frequency queries. While for high-frequency queries,
as the amount of data is so sufficient that click information is enough for estimating
user preference, the improvement of the TACM model is lower than the result in
middle-frequency query situation.

5.2.4. Comparison for Different Query Lengths.
Furthermore, we also compared different models for different query lengths. In
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Table III. click perplexity of each model for different query frequencies (Data-C).

Model (0, 10] TACM Impr. (10, 100] TACM Impr. (100, inf) TACM Impr.
TACM 1.361 - 1.332 - 1.391 -
PSCM 1.396 +8.8% 1.466 +28.8% 1.545 +28.3%
UBM 1.752 +52.0% 1.595 +44.2% 1.560 +30.2%
DBN 2.024 +64.7% 1.634 +47.6% 1.585 +33.2%
POM 2.870 +80.7% 2.281 +74.1% 2.268 +69.2%
THCM 2.813 +80.1% 2.266 +73.8% 2.089 +64.1%
TCM 5.216 +91.4% 3.596 +87.2% 3.520 +84.5%

Table IV. click perplexity of each model for different query frequencies (Data-Y).

Model (0, 10] TACM Impr. (10, 100] TACM Impr. (100, inf) TACM Impr.
TACM 1.415 - 1.379 - 1.455 -
PSCM 1.400 -3.8% 1.466 +18.6% 1.562 +19.0%
UBM 1.931 +55.4% 1.590 +35.7% 1.545 +16.6%
DBN 2.432 +71.0% 1.628 +39.6% 1.570 +20.2%
POM 3.567 +83.8% 1.860 +55.9% 1.787 +42.2%
THCM 3.335 +82.2% 2.269 +70.1% 2.069 +57.4%
TCM 7.450 +93.6% 4.181 +88.1% 4.020 +84.9%

Table V. click perplexity of each model for different query lengths (Data-C).

Model (0, 2] TACM Impr. (2, 4] TACM Impr. (4, 6] TACM Impr. (6, inf) TACM Impr.
TACM 1.350 - 1.359 - 1.358 - 1.349 -
PSCM 1.397 +11.8% 1.409 +12.2% 1.414 +13.5% 1.410 +14.9%
UBM 1.671 +47.8% 1.725 +50.5% 1.753 +52.5% 1.728 +52.1%
DBN 1.890 +60.7% 1.955 +62.4% 1.990 +63.8% 1.975 +64.2%
POM 2.776 +80.3% 2.767 +79.7% 2.762 +79.7% 2.784 +80.4%
THCM 2.658 +78.9% 2.706 +79.0% 2.757 +79.6% 2.741 +80.0%
TCM 5.013 +91.3% 4.927 +90.6% 4.901 +90.8% 4.943 +91.1%

Yandex dataset, they used query ID to identify specific query rather than query itself.
Therefore, we conduct this experiment only in Sogou dataset. We separated queries in
our dataset into four groups according to the query lengths: (0,2], (2,4], (4,6] , (6, inf).
Table V illustrates the performance of different models. We can observe that the
TACM model’s performance is much better than other click models at all query
lengths. The standard deviation of the TACM model at all query lengths was only
0.004, while for the PSCM model it was 0.007 and for the UBM model it was 0.035.
This result also proved that the TACM model’s performance is much more stable. We
can also find that our model improvement performs better with the increasing of
query length. This may be explained that user’s search intent becomes more complex
with the increasing of query length, and therefore, the dwell time information
becomes more important to reveal the result preference than click information.

5.3. Evaluation of Relevance Estimation
As a click model also provides a prediction of the relevance of a document for a query,
αuq, we can rank documents according to this value. The ranking results can be
measured using NDCG [Järvelin and Kekäläinen 2002]. This evaluation was
performed only on Data-C, for which human evaluators could be recruited to judge
document relevance. The same evaluation cannot be done on Data-Y because the data
has been encoded as unreadable code, and no relevance information is available.

For a random sample of 600 queries in Data-C, several professional assessors (from
Sogou.com, without knowing any information about this work) annotated a number of
results’ relevance scores for each query. The annotation was performed with 5 grades
(“Perfect”, “Excellent”, “Good”, “Fair” and “Bad”) as in most existing studies such as
Yang et al. [2010]. Majority voting was adopted to decide the relevance score if there
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Fig. 5. Relevance estimation performance in terms of NDCG@3 and NDCG@5 for Data-C (All differences
are statistically significant (p− value < 0.05) according to paired t-test).

were conflicts (at least 3 assessors were involved in each query-result pair
annotation). Due to limited human resources, the top five results for 345 queries were
annotated while only the top 3 results are annotated for the other 540 queries. With
the annotation results, we calculated the NDCG@N (N=3,5) scores for different click
models, and results are shown in Figure 5.

From Figure 5 we can see that the PSCM achieves better performance than UBM
and DBN. This result is consistent with our previous experimental results in [Wang
et al. 2015]. We can also see that the TACM achieves even better performance than
the PSCM model. This result shows that by properly incorporating click dwell time
information, we can generate more accurate relevance estimation. Further more, we
can see that the performance difference is more obvious in NDCG@5. This shows that
our model predicts much more accurate relevance than other models in lower positions.
This may because that the amount of user click action in lower positions is much lower
than top positions, and in this situation, the click dwell time may be a more reliable
signal of relevance compared to the user click count.

6. CONCLUSIONS AND FUTURE WORKS
In this paper, we address the problem of properly incorporating temporal information
into click models. First, we carried out a laboratory eye-tracking experiment to
analyze search users’ examination behaviors. From the observations, we formulated
two assumptions: the locally unidirectional assumption and the non-first-order
examination assumption. We also made analysis of user click dwell time in different
search logs. Based on our findings, we proposed a new click model named TACM
which incorporates both click dwell time information and non-sequential click
behaviors into click models while following the two assumptions on the examinations
between two clicks. The experimental results on large-scale click-through data
showed that our model outperforms existing models in click prediction. We also
conducted test on query-result relevance estimation. The experimental results also
show that the TACM outperforms existing models in relevance evaluation tasks.

This study shows the importance for a click model to correctly cope with users’
interactions. Compared to previous models, the assumptions made in our model are
more realistic and correspond better to observations from practice. Our experimental
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results show that different click dwell time among click actions indicate different
kinds of feedback information. Longer dwell time represents that users are willing to
spend more time on this search result and may further indicates that this search
result contains more useful information. We also find that the law of diminishing
marginal util exists in search environment because the negative exponential mapping
function performs best among a number of different mapping functions.

The proposed model can be further improved in several aspects. As different search
users may follow different behavior patterns, we plan to add factors that can tell the
difference between different users to make our model more personalized. Meanwhile,
we will try to improve the dwell time mapping function to make it more adaptable to
scenarios with different search intents. Furthermore, with more and more
multi-modal content incorporated into search interfaces, SERPs become more and
more heterogeneous. We plan to extend the TACM model to model user behaviors in a
heterogeneous search environment. Also, we believe that the proposed model can be
extended to model user interaction behaviors besides clicks in Web search scenarios
(e.g. hover, scroll, etc.)
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