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ABSTRACT
As a search query can correspond to multiple intents, search result

diversification aims at returning a single result list that could satisfy

as many users’ information needs as possible. However, determin-

ing the optimal ranking list is NP-hard. Several algorithms have

been proposed to obtain a local optimal ranking with greedy approx-

imations. In this paper, we propose a pruned exhaustive method to

generate better solutions than the greedy search. Our approach is

based on the observations that there are fewer than ten subtopics

for most queries, most relevant results cover only a few subtopics,

and most search users only focus on the top results. The proposed

pruned exhaustive search algorithm based on ordered pairs (Pe-

sOP) finds the optimal solution efficiently. Experimental results

based on TREC Diversity and NTCIR Intent task datasets show that

PesOP outperforms greedy strategies with better diversification

performance. Compared with the original non-pruned exhaustive

search, the PesOP algorithm decreases the computational cost while

maintaining optimality.
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1 INTRODUCTION
Web search users expect to find relevant information within the top-

ranked results [25]. However, when submitting one query, users

may have multiple search intents [1, 23, 26], and it is thus difficult
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Table 1: An example of search result diversification inwhich
the greedy strategy fails to produce optimal results.

Document

Subtopic 1 Subtopic 2

(importance = 0.5) (importance = 0.5)

a 0.6 0.6

b 1.0 0

c 0 1.0

for the search engine to return a result list that covers all user intents

(ambiguous queries) or aspects (underspecified or broad queries

[30]) in the top positions. Given an ambiguous or underspecified

query, search result diversification aims to produce a search engine

result page (SERP) that maximizes the probability of satisfying

different users’ information needs [9, 11, 16, 25, 26, 28]. However,

search result diversification has been proven to be NP-hard [4].

Several greedy search algorithms such as IA-Select [1] and xQuAD

[27] are therefore proposed to find an approximation of the optimal

diversified ranking list.

For example, consider three documents relevant to two subtopics

weighted equally for some query, as shown in Table 1. If we choose

the commonly-used weighted sum of document gains for subtopics

as evaluation metrics [1, 8] (see Section 3 for details), the greedy

search fails to produce optimal results. For example, to return a

result list with length two, the algorithm will either return {a,b} or
{a, c} because the diversified gain of a is 0.6, which is larger than

that of b or c , which are both 0.5. However, with an exhaustive

search strategy, we find that either {b, c} or {c,b} generate the

largest possible weighted sum of document gains with α-NDCG
[8] as the evaluation metric, as shown in Section 4. This example

shows that the greedy strategy cannot always produce an optimal

result list. However, the exhaustive search is impractical for online

Web search scenarios due to its time complexity.

Mei [16] proposed DivRank, which is an explainable ranking

algorithm based on a reinforced random walk. The model balances

diversity and prestige to provide non-redundant and high coverage

information in the top-ranked results. In the context of top-k rec-

ommendations, there have been advances in the improvement of

greedy algorithms to diversify results for better recommendation

results [15, 24]. Wang et al. [32] and Zuccon et al. [40] studied local

search strategies to find top-k search result combinations to better
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satisfy users’ information needs. However, these top-k recommen-

dation strategies cannot be directly utilized to solve the diversified

search problem because most of them diversify result combinations

by taking the inter-result correlation into consideration. In top-k
recommendation search problems, it is crucial to include novel re-

sults that are different from each other. In contrast, in diversified

search formulation, result lists should be diversified to meet the

information needs contained in different subtopics, thus generating

result lists which best cover subtopics. Therefore, these strategies

do not apply to search diversification. Hence, most research on

diversified search such as TREC diversity and NTCIR Intent tasks

still turns to greedy search strategies to generate diversified rank-

ing lists. A recent FnTIR survey on search result diversification

provides a complete discussion on this topic [29].

To improve the performance of result diversification, we propose

a search algorithm that produces better lists than the greedy search

with improved computational efficiency compared to exhaustive

search. The diversification problem is NP-hard [4]; fortunately, a

large proportion of documents are relevant to only one subtopic.

Take the TREC Web Diversity and NTCIR Intent datasets as an

example; only about 27% of retrieved documents are relevant to

more than one subtopic, as discussed in Section 4. Therefore, a

majority of candidate documents can be easily put into several sets

of ordered pairs (see Definition 4.1) reflecting their relative orders

in the optimal diversified result list. Rather than performing an

exhaustive search on all ordered pairs in a set, effective pruning can

be used to remove all the branches contradicting the determined

ordered pairs. Following this idea, we propose a pruned exhaus-

tive search algorithm based on ordered pairs (PesOP). The main

contributions of this paper are as follows:

(1) We show that a large proportion of documents are relevant to

only one subtopic, and prove that narrow subtopic coverage

leads to more ordered pairs, which offers an opportunity to

improve the efficiency of the exhaustive search in practice.

(2) We propose a pruned exhaustive search algorithm that ex-

ploits the above observation, leading to optimal diversified

ranking with improved performance.

(3) Experiments on TREC and NTCIR collections show that

the new search strategy produces better rankings than the

greedy search, and the new strategy has improved computa-

tional efficiency compared to exhaustive search.

The rest of this paper is organized as follows: Section 2 reviews

related work on diversification algorithms, Section 3 shows prelimi-

nary aspects of this study, Section 4 provides observations based on

TREC and NTCIR datasets, Section 5 presents the PesOP algorithm,

Section 6 reports experimental results and provides corresponding

analysis by comparing PesOP with different search strategies, and

Section 7 presents conclusions and directions for future work.

2 RELATEDWORK
Given an ambiguous or underspecified query, search result diversi-

fication aims to produce a SERP that maximizes the probability of

satisfying a general user’s information needs. Existing strategies

for search result diversification can be classified based on whether

the adopted aspect representation is explicit or implicit, where the

former has an explicit subtopic list provided.

2.1 Implicit Diversification Strategy
Implicit diversification does not require a pre-defined subtopic list

[27]. Novelty-based diversification methods [34, 35] select the doc-

ument that introduces the most novelty. A typical example is the

maximal marginal relevance (MMR) method [3], which iteratively

selects one document that is most relevant to the query and least

similar to the documents already selected. Wang et al. [32] pro-

posed a diversified search framework based on the portfolio theory

that ranks results according to both relevance and variance. Some

researchers use topic models to partition the candidate documents

into clusters [14], and the importance of clusters is then adopted in

the diversified ranking process with an MMR-like strategy.

To improve the efficiency of comparison among different doc-

uments in the non-diversified ranking list, several methods are

proposed. For instance, a novelty-based diversification is modeled

as a similarity search problem in a metric space [13]. In the study,

three different kinds of strategies (pivoting-based, clustering-based,

and permutation-based) are compared on the TREC Web track data.

Implicit aspects are extracted with relevance modeling and topic

models, then documents in each aspect are selected and added to

the final ranking list [5].

2.2 Explicit Diversification Strategy
Explicit diversification relies on a list of subtopics corresponding

to the possible search intents or aspects for a query. Given a list of

possible subtopics (or sub-intents, which are weighted according to

their popularity or importance) for a particular ambiguous or broad

query, search result diversification can be cast as a maximum cov-

erage problem [1] and hence is NP-hard. Therefore, most existing

research efforts use a greedy algorithm to obtain an approximation.

While an approach can exploit a manually constructed subtopic

list, several studies [27, 34, 35] have tried to identify the subtopics

automatically. The NTCIR Intent and IMine tasks explicitly address

this problem [26, 31]. Based on the generated subtopic list, the IA-

Select [1], PM-2 [10], and xQuAD [27] algorithms select documents

at each iteration with the highest diversified gain value, which is a

weighted sum of gain for each subtopic. Although the principle is

closely related to the novelty search algorithms [38, 39], an impor-

tant difference is that the novelty search algorithms try to avoid

redundancy among the selected documents, whereas the IA-Select,

PM-2, and xQuAD algorithms aim to maximize the coverage of

users’ information needs [12]. Furthermore, Wu et al. [33] found

that the subtopic distribution of result lists retrieved by explicit

diversification algorithms deviates from the actual user intention

distribution due to the objective function of the diversification

problems.

The election-based diversification approach [10] considers the

popularity of subtopics underlying a query. In each iteration step,

it determines which subtopic is most important to be covered and

then selects the document that is most relevant to this particu-

lar subtopic. Because a result may be relevant to more than one

subtopic, this algorithm combines the relevance to the most im-

portant subtopic and the relevance to other subtopics. The above

studies usually focus on developing new selection criteria, while

the selection process relies on greedy search, which tries to itera-

tively select one document that presents the highest gain according



to the selection function. Although there are some recent works

in which researchers tried to replace the greedy search strategy

with other solutions such as rank aggregation [19], most existing

works rely on the greedy approach and focus their efforts on how

to better estimate the diversified gain produced by documents. For

example, Capannini [2] uses the similarity between documents in

non-diversified ranking and documents in ranking lists generated

by subtopics to re-rank the original non-diversified list. The re-

ranking process, however, is also a greedy process. Both implicit

diversification and explicit diversification require a better solution

than the greedy search. As the exhaustive search is known to be

intractable, our goal is to propose algorithms that can produce bet-

ter results than the greedy search with reasonable time complexity.

Our solution is to prune unnecessary search branches to reduce

the computation time.

2.3 Pruned Exhaustive Search
Exhaustive search is the problem-solving methodology that enu-

merates all possible candidates for the solution and checks whether

each candidate satisfies the problem’s statement. Although the

exhaustive search is simple to implement, and will always find a so-

lution if one exists, the number of candidates is prohibitively large

for real-world problems. Therefore, some strategies are proposed

to prune the search space by reducing the number of candidate

solutions without compromising performance. For example, the

alpha-beta pruning algorithm [21] is widely used in machine play-

ing of two-player games and seeks to decrease the number of nodes

in the search tree. Other algorithms are also proposed to replace

alpha-beta pruning with better efficiency without sacrificing ac-

curacy, such as SCOUT [20] and MTD-f [22]. Recently, Neumann

proposed a pruning method for text localization and recognition in

real-world images based on character sequence information [18].

Chapelle et al. [6] studied the intent-aware search result diversifica-

tion problem pruning branches according to the upper bound and

lower bound for some set of candidates. Yu et al. [36] developed ef-

ficient diversification algorithms with a similarity threshold-based

pruning strategy. From a more theoretical approach, Yuan [37] stud-

ied the diversified top-k clique search problem, where unpromising

partial cliques are pruned to reduce the computational cost. There

is also a survey on searching and pruning by Morrison [17]. In

this paper, we focus on the explicit diversification strategy with a

pre-defined list of subtopics for each ambiguous query topic.

3 PRELIMINARIES
Given a query q and its set of subtopics C = {s1, . . . , sM }, we can
generateM ordered document lists with a retrieval system as the

initial list, where each list Di contains documents ranked in de-

creasing relevance in the corresponding subtopic si for 1 ≤ i ≤ M ,

and D = D1 ∪ . . . ∪ DM stands for the set of all candidate result

documents for a query. When a diversified result list S is considered

to be optimal according to a certain evaluation metric, it means that

S receives the highest score among all possible lists. Therefore, it is

necessary to define a reasonable evaluation metric that is used to

estimate the diversified gain generated from candidate documents.

A number of diversified evaluation metrics (e.g., NDCG-IA and

MAP-IA [1]) estimate the diversified gain of a candidate document

Algorithm 1: Greedy strategy for diversified search

Input: All retrieved documents D, the required list length L.
1 S ← ∅

2 while |S | < L do
3 d ′ ← argmaxd ∈D\S G (d, |S | + 1, S )

4 D ← D \ {d ′}

5 S ← S ∪ {d ′}

6 end
7 return S

according to both its relevance to different subtopics and its position

in the ranking list. Some other existing metrics further take into

account the documents ranked higher than the current candidate

(e.g., α-NDCG [8], ERR-IA [7], D#-NDCG [25] and DIN#-NDCG

[25]). In general, the diversified gain of a document could be con-

sidered as a function of the document’s relevance, the document’s

rank, and the influences from higher-ranked documents. Thus, the

diversified gain for a certain document d in most diversified search

evaluation metrics can be formulated as:

G (d, r , S ′) =
∑
si ∈C

(wi · дi (d ) · decayi (S
′) · decay (r )), (1)

whereC is the subtopic list of a query,wi is the weight attributed to

a subtopic si , дi (d ) is the gain value of the current document d for

intent si , r is the current ranking position, S
′
is the set of documents

ranked before d , дi (d ) is the annotated relevance score of d to si ,
decayi (S

′) is the decay factor derived from S ′ for subtopic si , and
decay (r ) stands for the decays with respect to a result’s ranking

position r . In most existing metrics (e.g. α-NDCG), decayi (S
′) is

defined as the number of documents in S ′ that are relevant to si .
We denote the documents ranked higher than the l-th document dl
as S ′l , and then the score of list S can be computed by accumulating

the diversified gains of all d in S as

Score (S ) =

|S |∑
l=1

G (dl , l , S
′
l ).

Under different user behavior assumptions, G (d, r , S ′) can be

instantiated in different forms, and this will lead to different diver-

sified ranking algorithms or evaluation metrics. For example, the

function G (d, r , S ′) in IA-Select is defined as:

G (d, r , S ′) =
∑
si ∈C

P (si |q)V (d |q, si )
∏
dj ∈S ′

(1 −V (d |q, si )),

where the factors

∏
dj ∈S ′ (1 − V (d |q, si )), P (si |q), and V (d |q, si )

correspond respectively to decayi (S
′), wi , and дi (d ) in Equation

(1). Although IA-Select iteratively selects the document with the

highest score, it does not take into account the ranking position of

the documents, thus the factor decay (r ) is dropped. G (d, r , S ′) can
be instantiated with α-NDCG as follows:

G (d, r , S ′) =
∑
si ∈C

J (d, si ) (1 − α )
ni,S′ / log

2
(r + 1), (2)

where J (d, si ) indicateswhetherd is relevant to a particular subtopic
si (or a nugget as in [8]) , the parameter ni,S ′ stands for the num-

ber of documents in S ′ that are relevant to si , and α represents



the probability of an annotation error for documents annotated

to be relevant. J (d, si ), 1/ log2 (r + 1), and (1 − α )ni,S′ correspond
respectively to дi (d ), decay (r ), and decayi (S

′) in Equation (1). The

weight of all subtopics in α-NDCG is set to be 1.

The gain value defined in Equation (2) assumes that subtopics

underlying a query are distributed uniformly and a document has

a binary relevance score to a subtopic. This definition works well

when binary annotation is used as in some early TREC tasks, but it

does not work with graded annotations or relevance scores anno-

tated in R. Therefore, we revise α-NDCG as:

G (d, r , S ′) =
∑
si ∈C

P (si |q)P (d |q, si ) (1 − α )
ni,S′ / log

2
(r + 1). (3)

In Equation (3), J (d, si ) is replaced with P (d |q, si ), and the impor-

tance of a subtopicwi is replaced with P (si |q). We notice that the

revised definition also follows the evaluation framework in the orig-

inal α-NDCG paper [8] which tries to estimate document relevance

and subtopic importance as well. In the paper, J (d, si ) and equal

importance scores are adopted instead of P (d |q, si ) and P (si |q) to
account for the typical TREC-like annotation standards at that time.

However, diversity search benchmarks from NTCIR Intent and

IMine tasks show that it is possible to estimate multi-grade rele-

vance and subtopic importance scores with manual efforts. Another

example of the gain definition of G (d, r , S ′) is the one adopted by

ERR-IA. According to Equation (1), its gain can be formulated as:

G (d, r , S ′) =
∑
si ∈C

P (si |q)Ri (d )
∏
dj ∈S ′

(1 − Rj (d ))/r , (4)

where Ri (d ) is the relevance of document d with respect to subtopic

si . The factors
∏

dj ∈S ′ (1−Rj (d )), P (si |q),Ri (d ) , and 1/r correspond

to decayi (S
′),wi , дi (d ), and decay (r ) in Equation (1), respectively.

The revised version of α-NDCG as in Equation (3) will be adopted

for the rest of the paper.

4 ORDERED PAIRS IN DIVERSIFIED SEARCH
As in the earlier example, greedy algorithms often fail to find the

optimal solution. This occurs especially in cases where two or

more documents have contradictory orders in different subtopics.

For example, in Table 1, result b is more relevant than result a to

Subtopic 1, but the reverse is true for Subtopic 2. If we use Equation

(3) to evaluate the diversified gain, the output of Algorithm 1 will be

{a,b} or {a, c} because G (b, 1, ∅) = G (c, 1, ∅) = 0.5 and G (a, 1, ∅) =
0.6, so a will be selected first. However, the optimal result list should

be {b, c} or {c,b} because Score ({b, c}) = Score ({c,b}) = 0.816

while Score ({a,b}) = Score ({a, c}) = 0.726 according to Equation

(3).

Suppose that we have two documents d1 and d2 that are relevant
to C ′(C ′ ⊂ C ) where C is the set of subtopics. For each subtopic

si ∈ C
′
, the corresponding relevance scores are relk,i (k = 1, 2; 0 <

relk,i ≤ 1). If for some si ∈ C1, we have rel1,i > rel2,i ; while
for some other sj ∈ C2, we have rel1, j < rel2, j (C1 , ∅,C2 ,
∅,C1 ∩C2 , ∅), it will be difficult to determine which document

should be placed higher in the final ranking list, since it depends

collaterally on documents currently selected as well as later ones

to be placed. However, the notion of ordered pairs improves the

search efficiency in an exhaustive search.

Table 2: The distribution of documents retrieved for differ-
ent numbers of subtopics in NTCIR-9/10 Intent tasks and
TREC 2012 Web track diversity datasets.

#(subtopic retrieved) NTCIR-9 NTCIR-10 TREC 2012

1 73.4% 74.3% 77.3%

2 15.7% 15.1% 12.7%

3 6.0% 5.7% 4.8%

4 2.7% 2.6% 2.5%

> 4 2.2% 2.3% 2.7%

Table 3: The distribution of documents relevant to different
numbers of subtopics in NTCIR-9/10 Intent tasks and TREC
2012 Web track diversity datasets.

#(subtopic retrieved) NTCIR-9 NTCIR-10 TREC 2012

1 48.1% 61.7% 56.0%

2 27.7% 24.3% 27.5%

3 13.4% 9.1% 10.1%

4 6.0% 3.4% 4.9%

> 4 4.8% 1.5% 1.5%

Definition 4.1. Denote by relk,i (0 < relk,i ≤ 1) the relevance
score for document dk in subtopic si ∈ C . Two documents d1 and
d2 are called an ordered pair (OP) if rel1,i > rel2,i for any si ∈ C ,
denoted as ⟨d1 7→ d2⟩.

To estimate the proportion of documents in which each docu-

ment {di } is relevant to a single subtopic, we analyze the datasets

provided by NTCIR Intent tasks and TRECWeb track diversity tasks

and determine the number of subtopics to which a document can

be relevant. We also look into the result lists for different subtopics

retrieved by search systems to gain an insight into the number of

subtopics in the retrieved documents.

Table 2 presents the percentages of documents that are retrieved

for different numbers of subtopics in NTCIR-9/10 Intent and TREC

2012 Web track diversity tasks. For each subtopic, 1,000 documents

were retrieved by our retrieval system with BM25 ranking. Mean-

while, because ideal lists are generated based on relevance judgment

results, we also look into the statistics of the qrels (documents with

relevance labeling) from these tasks as well. Table 3 shows the per-

centage of qrels that are relevant to different numbers of subtopics

from these tasks. We can see from these two tables that for these col-

lections, a majority of documents are relevant to only one subtopic

both in candidate result documents and in annotated qrels. Docu-

ments that are relevant to only one subtopic are ordered, thereby

forming a set of OPs. Thus, a large proportion of search branches

corresponding to orders different from those of the OPs can be cut

off in the pruning process of exhaustive search without compro-

mising performance. Consider a query topic with n subtopics and a

collection of N relevant documents with at least one subtopic anno-

tated with a nonzero relevance score, and we denote the percentage

of documents with k nonzero subtopic relevance scores by pk for

k from 1 to n. In the following theorem, we quantify the interplay

between the number of OPs and the amount of subtopic coverage.



Theorem 4.2. Let relevance scores be i. i. d. random variables with
absolutely continuous density with respect to Lebesgue measure, and
the distribution of k nonzero subtopics be uniform among the

(n
k

)
combinations; the probability that two documents form an OP is

P[OP] =
n∑

k=1

p2k

2
k−1

(n
k

) . (5)

Proof. Since the nonzero relevance scores are uniformly dis-

tributed among subtopics, the probability that two documents with

k nonzero relevance scores have the same subtopics is p2k

/ (n
k

)
. If

the relevance scores of the documents are i. i. d. with absolutely

continuous density, given two documents, the chance that one docu-

ment has higher relevance scores for all k nonzero relevance scores

than the other document is
1

2
k−1 , which concludes Equation (5). □

Given that most documents only cover one or two subtopics,

Theorem 4.2 suggests that narrow subtopic coverage leads to more

OPs, implying that the pruning algorithm is effective.

5 PRUNED EXHAUSTIVE SEARCH
In this section, we prove criteria to prune branches without com-

promising performance, and propose a pruning strategy for a more

efficient exhaustive search to obtain the optimal diversified ranking

by skipping useless branches.

5.1 Result Clustering to Find Ordered Pairs
While performing an exhaustive search, the candidates in a certain

iteration include all the documents except those already selected.

As discussed in Section 4, the candidate result documents may be

relevant to different subtopics, and only those documents that are

relevant to the same group of subtopics form OPs. Therefore, we

group documents into different clusters by subtopics. For a certain

subset of subtopics C ′, we group all candidate documents that are

relevant to, and only to, all subtopics in C ′ into a cluster C. Each

candidate is assigned to exactly one cluster, and can only form an

OP with other candidates in the same cluster. The total number of

clusters generated by a subtopic set C is:

|C |∑
k=0

(
|C |

k

)
= 2
|C | .

According to Tables 2 and 3, the percentage of documents relevant

to more than four subtopics is expected to be less than 5%. There-

fore, in actual Web search environments, the number of clusters

should be less than 2
|C |

. Within each cluster, the candidate docu-

ments may form a number of OPs. In particular, for those clusters

corresponding to only one subtopic, each pair of documents forms

an OP. For other clusters, although not all pairs of documents form

OPs, finding OPs is efficient since judging whether two documents

form an OP only requires comparing their relevance scores for the

subtopics involved.

5.2 Candidate Selection for Pruned Search
After clustering candidate documents according to the subtopics

they are relevant to and identifying OPs from the clusters, we show

in Theorems 5.1 and 5.2 that OPs could be adopted to reduce the

number of candidates in each iteration of the exhaustive search.

Theorem 5.1. Let decayi (S ′) be a function of the number of doc-
uments in S ′ that are relevant to si . Given an ordered pair ⟨d1 7→ d2⟩
of a subset of subtopics C ′, if only one document from the set {d1,d2}
appears in the optimal ranking list, that document should be d1.

Proof. Consider any list S containing d1 and a copy of the list

S̃ with d1 replaced by d2. Then

Score (S ) =

|S |∑
l=1

G (dl , l , S
′
l ),

Score (S̃ ) =

|S |∑
l=1

G (dl , l , S̃
′
l ).

Since both d1 and d2 are relevant to the same subset of subtopics,

switching d1 and d2 will not influence the decay scores of docu-

ments ranked lower than the l-th position by hypothesis. There-

fore, дi (d ) is the only element different between G (d1, l , S
′) and

G (d2, l , S
′) and we have дi (d1) ≥ дi (d2) for any si , according to the

definition of an ordered pair; hence, Score (S ) ≥ Score (S̃ ). □

Theorem 5.2. Let decayi (S ′) be a monotonically decreasing func-
tion of the number of documents in S ′ that are relevant to si , and let
decay (·) be monotonically decreasing. Given an ordered pair ⟨d1 7→
d2⟩ of a subset of subtopicsC ′, if both d1 and d2 appear in the optimal
ranking list, d1 should be ranked higher than d2.

Proof. Let S1 be a result list containing an ordered pair ⟨d1 7→
d2⟩, where d1 is ranked at the k-th location, and d2 is ranked at

the l-th location with k > l , as illustrated in Figure 1. Switching

the location of d1 and d2 yields a new result list, and we call it

S2. We show that Score (S1) > Score (S2). Let us denote by S ′ the
sub-list ranked higher than the l-th location, which is identical in S1
and S2. We use S

1,k and S
2,k for the sub-lists of documents ranked

before the k-th position in S1 and S2 respectively; indistinguishably
denoted as S∗,k . Then the diversified gain of d1 and d2 in S1 is:

G (d1, l , S
′) +G (d2,k, S1,k ) =

∑
si ∈C ′

wi · дi (d1) · decayi (S
′) · decay (l )

+
∑
si ∈C ′

wi · дi (d2) · decayi (S1,k ) · decay (k )

The diversified gain of d1 and d2 in S2 is:

G (d2, l , S
′) +G (d1,k, S2,k ) =

∑
si ∈C ′

wi · дi (d2) · decayi (S
′) · decay (l )

+
∑
si ∈C ′

wi · дi (d1) · decayi (S2,k ) · decay (k )

Since bothd1 andd2 are relevant to the same subtopics, anddecayi (S
′)

is only related to the number of documents in S ′, for each subtopic

si ∈ C ′, decayi (S1,k ) = decayi (S2,k ). The difference between

Score (S1) and Score (S2) is contributed by the diversified gain of d1
and d2:

G (d1, l , S
′) +G (d2,k, S1,k ) −G (d2, l , S

′) −G (d1,k, S2,k ) (6)

=
∑
si ∈C ′

wi · дi (∆d ) · (decayi (S
′) · decay (l ) − decayi (S∗,k ) · decay (k ))

whereдi (∆d ) = (дi (d1)−дi (d2)) > 0 by Definition 4.1. Since the de-

cay functions decayi (·) and decay (·) are monotonically decreasing,



with the conditions l < k and S ′ ⊂ S∗,k we get:∑
si ∈C ′

(decayi (S
′) · decay (l ) − decayi (S

′
2
) · decay (k )) > 0

Therefore, the value of Equation (6) is greater than 0, which con-

cludes that Score (S1) > Score (S2). □

d1 d2

S1 S2

d2 d1

S′
1

S2,kS1,k

1st

kth

lth

Figure 1: Result list S1 and S2.

Theorems 5.1 and 5.2 show that if we group documents into

clusters of OPs, we can prune branches in the exhaustive search

because the order of documents in an OP should be preserved in

the optimal result ranking list. That is, if ⟨d1 7→ d2⟩, d1 should be

selected as a candidate instead of d2. Therefore, we propose the
following PesOP algorithm (Algorithm 2) to prune the candidate

selection process in each exhaustive search iteration. The function

select_candidates generates the set of candidates for a position

in an iteration, where each element in the set appears first in all

of the OPs containing the element. When a document d from the

candidate set is selected for the current position, it is removed from

its cluster. Since the candidate selection process in Algorithm 2 only

removes the branches that would not lead to the optimal ranking,

the PesOP algorithm generates the optimal results as the original

exhaustive search algorithm, but with improved efficiency.

6 EXPERIMENTS AND DISCUSSIONS
In the experiments, we answer the following research questions:

RQ1. Does the PesOP algorithm outperform the greedy search?

RQ2. How efficient is the PesOP algorithm compared with the

exhaustive search and greedy search?

6.1 Experiment Setups
To answer the above research questions, we collected subtopics

submitted in subtopic mining tasks. In the NTCIR-9 INTENT task

and NTCIR-10 INTENT-2 task, participants were provided with 100

query topics in each task to mine the subtopics weighted by the

importance estimations for each query topic. These tasks were per-

formed by 18 teams, totaling 3,600 query instances. A text retrieval

system retrieved initial lists for the top ten subtopics of each in-

stance based on SogouT
1
. In addition to these 200 Chinese queries,

1
https://www.sogou.com/labs/resource/t.php

Algorithm 2: Pruned exhaustive search based on ordered pairs
Input: The set of initial documents D.

1 cluster_set = ∅

2 for d in D do
3 Id = the index set of intents with reli (d ) > 0

4 if Id < cluster_set then
5 cluster_set ← cluster_set ∪ Id
6 end
7 cluster_set (Id ) ← {d }

8 end
9

10 Function select_candidates()
11 candidates = ∅

12 for each Id in cluster_set do
13 OP_set (Id ) = all OPs in cluster_set (Id )

14 for each d in cluster_set (Id ) do
15 if d is never the second element inOP_set (Id ) then
16 candidates ← candidates ∪ {d }

17 end
18 end
19 end
20 return candidates

21

22 Function Recursion(S , D, returnS)
23 if S = |L| then
24 returnS ← returnS ∪ S

25 return Score(returnS)
26 end
27 else
28 for each d in D do
29 S ← S ∪ {d }

30 return Recursion(S,D \ {d }, returnS )

31 end
32 end
33

34 maxG = 0

35 S ← ∅

36 for each d in select_candidates do
37 returnS ← ∅

38 curG = Recursion({d }, select_candidates \ {d }, returnS )

39 if maxG < curG then
40 maxG ← curG

41 S ← returnS

42 end
43 end
44 return S

50 English queries from TREC 2012 Web track diversity task were

performed by 29 teams independently, totaling 1,450 English query

instances. Initial lists for the top ten subtopics of each instance

were retrieved for the top ten subtopics based on ClueWeb09
2
.

2
http://lemurproject.org/clueweb09/

https://www.sogou.com/labs/resource/t.php
http://lemurproject.org/clueweb09/


Table 4: Percentage of optimal lists generated by IA-Select
[1], Utility [2], xQuAD [27], CombSUM [19], PM2 [10], and
PesOP for different queries.

Dataset Algorithm

Required Result List Length L
2 3 4 5

Chinese

Queries

(NTCIR

-9&10)

PesOP 100% 100% 100% 100%

IA-Select 94.0% 86.9% 79.6% 71.9%

Utility 0.10% 0.03% 0.00% 0.00%

xQuAD 1.04% 0.42% 0.39% 0.39%

CombSUM 1.06% 0.43% 0.39% 0.37%

PM2 17.5% 8.94% 4.96% 2.69%

English

Queries

(TREC

2012)

PesOP 100% 100% 100% 100%

IA-Select 92.8% 82.2% 71.0% 59.1%

Utility 0.00% 0.00% 0.00% 0.00%

xQuAD 2.78% 0.42% 0.00% 0.00%

CombSUM 2.75% 0.45% 0.00% 0.00%

PM2 21.60% 8.54% 3.61% 1.74%

The top 20 documents are labeled with relevance scores. We nor-

malize the relevance score of each document by the maximum score

of documents in the same subtopic, which is taken as P (d |q, si ) in
Equation (3). The subtopics with their weights and their retrieved

results are taken as the input of all diversified search algorithms

(Algorithms 1, 2) to determine which method produces diversified

result rankings with higher revised α-NDCG as described in Equa-

tion (3), which takes the factor ofdecayi (S
′) into consideration. The

revised α-NDCG is adopted instead of its original version because

the original α-NDCG assumes that only binary relevance judgment

is available and all subtopics are equally important. Since the most

recent benchmark datasets such as TREC Diversity and NTCIR

Intent tasks provide multi-grade relevance judgment and subtopic

importance estimations, it is natural to extend the measure to fit

such graded relevance judgments.

6.2 Diversified Result Ranking
With the above experimental settings, we first try to answer the

research question RQ1 by investigating how the proposed algo-

rithms work in the diversified ranking task. Since it is costly for

the exhaustive search to generate a diversified ranking with L > 5,

we limit the required list length to 2, 3, 4 and 5 to compare the

efficiency of the algorithms. Table 4 shows the percentage of query

instances for which each algorithm generates optimal ranking lists.

The performance of exhaustive search, greedy search (Algorithm 1,

with IA-Select [1] as an example), Utility method [2], xQuAD [27],

CombSUM [19], PM2 [10], and PesOP (Algorithm 2) are compared

while they are performed on the results retrieved from NTCIR and

TREC datasets with our retrieval system.

From Table 4 we can see that with different L and different

datasets, the PesOP algorithm generates the optimal results just

as the original exhaustive search algorithm does. This agrees with

Theorems 5.1 and 5.2, which ensure that removing branches that

lead to result lists against existing ordered pairs will not affect

the optimality of exhaustive search algorithms. Different from the

proposed PesOP algorithm, IA-Select [1], Utility [2], xQuAD [27],

Table 5: Average time cost per query (in seconds) for diversi-
fied document ranking with different retrieval length.

Dataset Algorithm

Required Result List Length L
2 3 4 5

NTCIR

-9&10

Exhaustive Search 0.0260 4.2660 724.4 81283

Greedy Search 0.0003 0.0004 0.0004 0.0005

PesOP 0.0018 0.0229 0.6166 19.95

TREC

2012

Exhaustive Search 0.0224 3.715 549.5 32359

Greedy Search 0.0003 0.0003 0.0004 0.0005

PesOP 0.0019 0.0251 0.6918 22.91

CombSUM [19], and PM2 [10] fail to obtain optimal results for some

cases according to Table 4. IA-Select obtains better results than the

other baselines because the diversified search results are evaluated

based on the revised α-NDCG. While selecting a document for

the ranking list, IA-Select always chooses the candidate with the

largest α-NDCG value in each step, whereas the other methods

choose documents according to other standards, which may be

much different from α-NDCG. Therefore, few of their results can

be optimal when evaluated by the revised α-NDCG. Table 4 also
shows that when the length of the required result list increases,

the percentage of optimal ranking for IA-Select drops from 94%

to 71.9% on Chinese datasets and from 92.8% to 59.1% on English

datasets. This reflects the fact that the greedy search targets local

optimality. In fact, the xQuAD, CombSUM, and PM2 are also greedy

algorithms, but their different evaluation metrics make them hardly

comparable with the greedy search and PesOP.

6.3 Efficiency of Algorithms
We investigate the time cost of the proposed algorithm and compare

with the exhaustive search and greedy search. Table 5 presents the

time cost of the experiments in seconds, as discussed in Section 6.2.

All experiments are performed on a Linux server with a 12-core

AMD Opteron CPU and 64-Gigabyte memory.

Table 5 shows that the time cost of the original exhaustive search

increases quickly as L increases, making it infeasible to obtain a

ranking list for larger L. On the other hand, the greedy search runs

approximately in linear time. This makes it particularly suitable

for situations in which a fast selection of diversified result lists is

required. Although the time cost of the PesOP algorithm is higher

than that of the greedy algorithm, it is much lower than that of the

exhaustive search, and provides the same ranking performance as

exhaustive search according to Table 4.

7 CONCLUSION
The problems of generating diversified search results and ideal

ranking lists are two important issues in Web search diversification.

They have been proven to be NP-Hard, and solutions based on the

exhaustive search are impractical. Greedy search strategies have

been adopted in prior studies, but the results are non-optimal. In this

paper, we propose a pruned exhaustive search algorithm (PesOP)

to reduce the complexity of exhaustive search and to generate the

optimal ranking list based on findings in diversified search data

sets. Pruning strategies are developed based on ordered pairs (OPs),



according to which a large number of candidates generated in each

exhaustive search iteration can be reduced. Experimental results

based on NTCIR and TREC datasets showed that the revised PesOP

algorithm significantly outperforms the widely used greedy search

algorithm IA-Select [1], Utility [2], xQuAD [27], CombSUM [19],

and PM2 [10]. The approaches proposed in this paper represent

only the first step towards better result rankings and more reliable

system evaluations in the diversified search. Many questions remain

to be addressed, such as how to develop more efficient methods

when reasonable relaxation on the optimality is allowed, and how

to reduce the time complexity of determining the optimal ranking

for the top ten results and beyond.
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